1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lidiya [134]
3 years ago
7

You push a coin across a table. The coin stops. How does this motion relate to balanced and unbalanced forces?

Physics
1 answer:
Snezhnost [94]3 years ago
7 0
If you are pushing the coin across the table at a constant rate, the friction of the table and the horizontal force of your hand pushing are equal, and the coin itself moves at a constant rate. If you push a coin and let it go, there is no horizontal force keeping the coin going. Friction slows the coin to a stop. In both cases, the gravitational downward pull of Earth is equally but oppositely resisted by the upward push of table on the coin.
You might be interested in
A jogger hears a car alarm and decides to investigate. While running toward the car, she hears an alarm frequency of 872.10 Hz.
Nata [24]

Answer:

v = 4.18 m/s

Explanation:

given,

frequency of the alarm = 872.10 Hz

after passing car frequency she hear = 851.10 Hz

Speed of sound = 343 m/s

speed of the jogger = ?

speed of the

v_f = \dfrac{872.10-851.10}{2}

v_f =10.5\ Hz

v_o = 872.1 - 10.5

V_0 = 861.6\ Hz

The speed of jogger

v = \dfrac{v_1 \times 343}{v_0}-343

v = \dfrac{872.1 \times 343}{861.6}-343

v = 4.18 m/s

5 0
3 years ago
supose at 20 degree celsius the resistance of Tungsten thermometer is 154.9. WHen placed in a particular solution , the resistan
saw5 [17]

Answer:

T₂ = 95.56°C

Explanation:

The final resistance of a material after being heated is given by the relation:

R' = R(1 + αΔT)

where,

R' = Final Resistance = 207.4 Ω

R = Initial Resistance = 154.9 Ω

α = Temperature Coefficient of Resistance of Tungsten = 0.0045 °C⁻¹

ΔT = Change in Temperature = ?

Therefore,

207.4 Ω = 154.9 Ω[1 + (0.0045°C⁻¹)ΔT]

207.4 Ω/154.9 Ω = 1 + (0.0045°C⁻¹)ΔT

1.34 - 1 = (0.0045°C⁻¹)ΔT

ΔT = 0.34/0.0045°C⁻¹

ΔT = 75.56°C

but,

ΔT = Final Temperature - Initial Temperature

ΔT = T₂ - T₁ = T₂ - 20°C

T₂ - 20°C = 75.56°C

T₂ = 75.56°C + 20°C

<u>T₂ = 95.56°C</u>

7 0
3 years ago
a shot putter releases the shot some distance above the level ground with a velocity of 12.0 m/s, 51.0 ∘above the horizontal. th
Savatey [412]

Answer:

15.7 m

Explanation:

The range (horizontal distance) of the projectile is determined only by its horizontal motion.

The horizontal motion is a motion with constant speed, which is equal to the initial horizontal velocity of the object:

v_x = v cos \theta

where

v = 12.0 m/s is the initial velocity

\theta=51.0^{\circ} is the angle between the direction of v and the horizontal

Substituting,

v_x = (12.0 m/s)(cos 51.0^{\circ} )=7.55 m/s

We know that the projectile hits the ground in a time of

t = 2.08 s

so the horizontal distance covered is

d = v_x t = (7.55 m/s)(2.08 s)=15.7 m

8 0
3 years ago
When a stress is applied to rocks within the lithospere, the rocks will tend to deform ...?
grandymaker [24]
The answer to your question is true                                                                           
6 0
3 years ago
A certain frictionless simple pendulum having a length L and mass M swings with period T. If both L and M are doubled, what is t
vampirchik [111]

The new period is D) √2 T

\texttt{ }

<h3>Further explanation</h3>

Let's recall Elastic Potential Energy and Period of Simple Pendulum formula as follows:

\boxed{E_p = \frac{1}{2}k x^2}

where:

<em>Ep = elastic potential energy ( J )</em>

<em>k = spring constant ( N/m )</em>

<em>x = spring extension ( compression ) ( m )</em>

\texttt{ }

\boxed{T = 2\pi \sqrt{ \frac{L}{g} }}

where:

<em>T = period of simple pendulum ( s )</em>

<em>L = length of pendulum ( m )</em>

<em>g = gravitational acceleration ( m/s² )</em>

Let us now tackle the problem!

\texttt{ }

<u>Given:</u>

initial length of pendulum = L₁ = L

initial mass = M₁ = M

final length of pendulum = L₂ = 2L

final mass = M₂ = 2M

initial period = T₁ = T

<u>Asked:</u>

final period = T₂ = ?

<u>Solution:</u>

T_1 : T_2 = 2\pi \sqrt{ \frac{L_1}{g} }} : 2\pi \sqrt{ \frac{L_2}{g} }}

T_1 : T_2 = \sqrt{L_1} : \sqrt{L_2}

T : T_2 = \sqrt{L} : \sqrt{2L}

T : T_2 = 1 : \sqrt{2}

\boxed {T_2 = \sqrt{2}\ T}

\texttt{ }

<h3>Learn more</h3>
  • Kinetic Energy : brainly.com/question/692781
  • Acceleration : brainly.com/question/2283922
  • The Speed of Car : brainly.com/question/568302
  • Young Modulus : brainly.com/question/9202964
  • Simple Harmonic Motion : brainly.com/question/12069840

\texttt{ }

<h3>Answer details</h3>

Grade: High School

Subject: Physics

Chapter: Elasticity

3 0
3 years ago
Read 2 more answers
Other questions:
  • A conveyer belt moves a 40 kg box at a velocity of 2 m/s. What is the kinetic energy of the box while it is on the conveyor belt
    7·2 answers
  • a 20 ft shipping container on a cargo ship has a mass of 24000 kg and a volume of 33.2m3. what is the density of the shipping co
    6·1 answer
  • A capacitor is charged by a 150.0-V power supply, then disconnected from the power and connected in series with a 0.280-mH induc
    10·1 answer
  • There are four coils of wire being used as electromagnets. They all have the same size and are made up of the same material but
    15·1 answer
  • Write short note on fulcrum​
    12·1 answer
  • Energy is<br> A) conserved<br> OB) created only<br> OC) destroyed only<br> OD) created or destroyed
    15·2 answers
  • An object with a mass of 2.0 kg accelerates 2.0 m/s2 when an unknown force is applied to it. What is the amount of the force?​
    8·2 answers
  • A train is rounding a circular curve whose radius is 2.55 x 102 m. At one instant, the train has an angular acceleration of 1.48
    7·1 answer
  • Can y'all help me please?
    11·2 answers
  • Define pressure and enlist its various units
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!