Answer:
work output is always less than work input - the ratio is less than 1.
Explanation:
This principle comes from the fact that a machine or system cannot produce more work than is supplied to it, because this would violate the energy conservation law (work is a type of mechanical energy).
In theoretical machines called "ideal machines" the input work is the same as the output work, but these machines are only theoretical because in real applications there is always some type of energy loss, either in heat produced by a machine or processes for its operation, for this reason the output work is always less than the input work.
Regarding the ratio work output to work input:

because work input WI is always greater than work output WO.
Answer:
In an elastic collision, the momentum is conserved and the mechanical energy is conserved too.
Explanation:
There are two types of collisions:
- Elastic collision: in an elastic collision, the total momentum before and after the collision is conserved; also, the total mechanical energy before and after the collision is conserved.
- Inelastic collision: in an inelastic collision, the total momentum before and after the colllision is conserved, while the total mechanical energy is not conserved (in fact, part of the energy is converted into other forms of energy such that thermal energy, due to the presence of frictional forces)
Answer:
Push -repulsion
Pull - attraction
Explanation:
When two magnets are brought together, a push happens when a force of repulsion is experienced where the magnets move away from each other. This means their polarity is the same and this will cause the magnet to push away from each other.
When two magnets are brought together , a pull happens when a force of attraction is experienced where the magnets move close to each other. This means their polarity is different and thus causes the magnets to pull closer to each other.
Good afternoon!
We calculate the volume of the container in cm³. To do that, we must put the units in cm:
30 cm → 30 cm
50 mm → 5 cm
0.2 m → 20 cm
The volume is:
V = 30 . 5 . 20
V = 3000 cm³
Now, we calculate the mas with the formula:
m = dV
m = 2.5 · 3000
m = 7500 g
Dividing by 1000, we have the mass in kg:
m = 7.5 kg
Answer:
The second trumpeter will be playing at frequency = 515 Hz
Explanation: Given that the note sounds lower and they can hear 20 beats in 4.0 s.
Beat frequency = 20/4 = 5 Hz
Beat frequency = F2 - F1
5 = 520 - F1
F1 = 520 - 5
F1 = 515 Hz
Since the note sound lower, the second trumpeter will be playing at 515 Hz frequency