1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Marianna [84]
3 years ago
5

Light trucks and vans were mandated what year

Engineering
1 answer:
Archy [21]3 years ago
6 0

Answer: The first nationwide US light duty vehicle emission standards were implemented in 1968, and subsequently reviewed every couple of years. New standards were referred to by the effective model year of the regulation from 1968 to 1987

You might be interested in
What is the purpose of having a ventilation system on board a motorized vessel?.
chubhunter [2.5K]

The purpose of having a ventilation system on board a motorized vessel is : To remove flammable gas from a vessel to avoid explosions.

<h3>Meaning of ventilation system</h3>

A ventilation system can be defined as a system that allows for removal of gases from a vessel to the atmosphere.

A Ventilation system is very important in every motorized vessel because they help to eliminate or remove flammable gases that are dangerous and are liable to explode when held in a large amount in the engine.

In conclusion, The purpose of having a ventilation system on board a motorized vessel is to remove flammable gas from a vessel their by avoiding explosions.

Learn more about Ventilation System: brainly.com/question/1687520

#SPJ4

4 0
2 years ago
Consider a modification of the air-standard Otto cycle in which the isentropic compression and expansion processes are each repl
Ulleksa [173]

Answer:

The answers to the question are

(1) Process 1 to 2

W = 295.16 kJ/kg

Q = -73.79 kJ/kg

(2) Process 2 to 3

W = 0

Q = 1135.376 kJ/kg

(3) Process 3 to 4

W = -1049.835 kJ/kg

Q = 262.459 kJ/kg

(4) Process 4 to 3

W=0

Q = -569.09 kJ/kg

(b) The thermal efficiency = 49.9 %

(c) The mean effective pressure is 9.44 bar

Explanation:

(a) Volume compression ratio \frac{v_1}{v_2}  = 10

Initial pressure p₁ = 1 bar

Initial temperature, T₁ = 310 K

cp = 1.005 kJ/kg⋅K

Temperature T₃ = 2200 K from the isentropic chart of the Otto cycle

For a polytropic process we have

\frac{p_1}{p_2}  = (\frac{v_2}{v_1} )^n Therefore p₂ = p₁ ÷ (\frac{v_2}{v_1} )^n = (1 bar) ÷ (\frac{1}{10} )^{1.3} = 19.953 bar

Similarly for a polytropic process we have

\frac{T_1}{T_2}  = (\frac{v_2}{v_1} )^{n-1} or T₂ = T₁ ÷ (\frac{v_2}{v_1} )^{n-1} = \frac{310}{0.1^{0.3}} = 618.531 K

The molar mass of air is 28.9628 g/mol.

Therefore R = \frac{8.3145}{28.9628} = 0.287 kJ/kg⋅K

cp = 1.005 kJ/kg⋅K Therefore cv = cp - R =  1.005- 0.287 = 0.718 kJ/kg⋅K

1). For process 1 to 2 which is polytropic process we have

W = \frac{R(T_2-T_1)}{n-1} = \frac{0.287(618.531-310)}{1.3 - 1}= 295.16 kJ/kg

Q =(\frac{n-\gamma}{\gamma - 1} )W = (\frac{1.3-1.4}{1.4-1} ) 295.16 kJ/kg = -73.79 kJ/kg

W = 295.16 kJ/kg

Q = -73.79 kJ/kg

2). For process 2 to 3 which is reversible constant volume heating we have

W = 0 and Q = cv×(T₃ - T₂) = 0.718× (2200-618.531) = 1135.376 kJ/kg

W = 0

Q = 1135.376 kJ/kg

3). For process 3 to 4 which is polytropic process we have

W = \frac{R(T_4-T_3)}{n-1} = Where T₄ is given by  \frac{T_4}{T_3}  = (\frac{v_3}{v_4} )^{n-1} or T₄ = T₃ ×0.1^{0.3}

= 2200 ×0.1^{0.3}  T₄ = 1102.611 K

W =  \frac{0.287(1102.611-2200)}{1.3 - 1}= -1049.835 kJ/kg

and Q = 262.459 kJ/kg

W = -1049.835 kJ/kg

Q = 262.459 kJ/kg

4). For process 4 to 1 which is reversible constant volume cooling we have

W = 0 and Q = cv×(T₁ - T₄) = 0.718×(310 - 1102.611) = -569.09 kJ/kg

W=0

Q = -569.09 kJ/kg

(b) The thermal efficiency is given by

\eta = 1-\frac{T_4-T_1}{T_3-T_2} =1-\frac{1102.611-310}{2200-618.531} = 0.499 or 49.9 % Efficient

(c) The mean effective pressure is given by

p_{m}  = \frac{p_1r[(r^{n-1}-1)(r_p-1)]}{ (n-1)(r-1)}  where r = compression ratio and r_p = \frac{p_3}{p_2}

However p₃ = \frac{p_2T_3}{T_2} =\frac{(19.953)(2200)}{618.531} =70.97 atm

r_p = \frac{p_3}{p_2} = \frac{70.97}{19.953}  = 3.56

Therefore p_m =\frac{1*10*[(10^{0.3}-1)(3.56-1)]}{0.3*9} = 9.44 bar

Please find attached generalized diagrams of the Otto cycle

8 0
3 years ago
A mixing basin in a sewage filtration plant is stirred by a mechanical agitator with a power input/WF L T=. Other parameters de
MakcuM [25]

Answer: π= G[√(u.V/W)]

STEP 1

Given parameters:

Power Input W= FL/T,

Absolute Viscosity u= FT/L²

Basin volume V= V/L³

Velocity gradient G= V/L³

STEP 2

We start by expressing the velocity gradient G as a function of W, u, V

G= G(W,u,V)

To get the pii terms, we use the dimension number formula n=k - r

where n and k are natural numbers representing number of fundamental dimensions and variable present respectively.

n= 4-3=1

STEP 3:

We expressed the pii terms as

π= G.W^a.u^b.V^c

The three fundamental F L T

We can write as

Fⁿ.Lⁿ.Tⁿ= 1/T. (FL/T)^a.(FT/L²)^b.(L³)

Using the exponential rule and by comparing coefficient on both sides;

Fⁿ.Lⁿ.Tⁿ= F^a+b. L^a-2b+3c. T^-a+b-1

Fⁿ= F^a+b = a+b= 0..............I

Lⁿ= L^a-2b+3c=0 = a-2b+3c=0...........ii

Tⁿ=L^-a+b-1=0. -a+b-1=0............iii

From the above equations we have,

a+b =0: b=-a...........iv

putting eq. iv into iii , we have

-a-a-1=0: -2a-1=0: a= -1/2

substituting the above value of a into eq iv, we have

b= 1/2

substituting the value of b above into eq 2, we have,

-1/2-2(1/2)+3c=0

c=1/2.

Lastly, from the pii terms given above we can obtain dimensionless relationship,

π=G(W^-1/2.u^1/2.V^1/2)

We can write this as

π= G[ √1/W.√u. √1/2] = G[(√u.V/√W)] or G[√(u.V/W)].... final answer.

5 0
4 years ago
What should always be done before beginning any diagnosis?
vladimir2022 [97]

Answer:

c

Explanation:

if someone is wrong that they can help with

4 0
3 years ago
Two engineers are to solve an actual heat transfer problem in a manufacturing facility. Engineer A makes the necessary simplifyi
deff fn [24]

Answer:

Engineer A results will be more accurate

Explanation:

Analytical method is better than numerical method. Engineer A has used analytical method and therefore his results will be more accurate because he used simplified method. Engineer B has used software to solve the problem related to heat transfer his results will be approximate.

5 0
3 years ago
Other questions:
  • Main technologies used in atms vending machines game consoles and microwave ovens
    6·1 answer
  • You’ve experienced convection cooling if you’ve ever extended your hand out the window of a moving vehicle or into a flowing wat
    6·1 answer
  • Select the properties and typical applications for the high carbon steels.
    12·1 answer
  • ¿Cuál era probablemente el activo más valioso de Persia?
    10·2 answers
  • A steam power plant operates on an ideal Rankine cycle with two stages of reheat and has a net power output of 120 MW. Steam ent
    14·1 answer
  • PLEASE HELP!!! ILL GIVE BRANLIEST *EXTRA POINTS* dont skip :((
    11·2 answers
  • . (20 pts) A horizontal cylindrical pipe (k = 10 W/m·K) has an outer diameter of 15 cm and a wall thickness of 5 cm. The pipe is
    14·1 answer
  • The size of an engine is called the engine
    13·2 answers
  • Is it permissible to install recessed fixture directly against wood ceiling joists? Explain why or why not.
    5·1 answer
  • Engine horsepower decreases ________% for every___________feet above sea level.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!