Answer:
fracture will occur as the value is less than E/10 (= 22.5)
Explanation:
If the maximum strength at tip Is greater than theoretical fracture strength value then fracture will occur and if the maximum strength is lower than theoretical fracture strength then no fracture will occur.
![\sigma_m = 2\sigma_o [\frac{a}{\rho_t}]^{1/2}](https://tex.z-dn.net/?f=%5Csigma_m%20%3D%202%5Csigma_o%20%5B%5Cfrac%7Ba%7D%7B%5Crho_t%7D%5D%5E%7B1%2F2%7D)

= 15 GPa
fracture will occur as the value is less than E/10 = 22.5
Answer:
Option A, World War II
Explanation:
During the period of industrial revolution around 1915-25, the chemical engineering has taken a new shape. During this period (i.e around the world war I), there was rise in demand for liquid fuels, synthetic fertilizer, and other chemical products. This lead to development of chemistry centre in Germany . There was rise in use of synthetics fibres and polymers. World war II saw the growth of catalytic cracking, fluidized beds, synthetic rubber, pharmaceuticals production, oil & oil products, etc. and because of rising chemical demand, chemical engineering took a new shape during this period
Hence, option A is the right answer
Answer:
the width of the turning roadway = 15 ft
Explanation:
Given that:
A ramp from an expressway with a design speed(u) = 30 mi/h connects with a local road
Using 0.08 for superelevation(e)
The minimum radius of the curve on the road can be determined by using the expression:

where;
R= radius
= coefficient of friction
From the tables of coefficient of friction for a design speed at 30 mi/h ;
= 0.20
So;



R = 214.29 ft
R ≅ 215 ft
However; given that :
The turning roadway has stabilized shoulders on both sides and will provide for a onelane, one-way operation with no provision for passing a stalled vehicle.
From the tables of "Design widths of pavement for turning roads"
For a One-way operation with no provision for passing a stalled vehicle; this criteria falls under Case 1 operation
Similarly; we are told that the design vehicle is a single-unit truck; so therefore , it falls under traffic condition B.
As such in Case 1 operation that falls under traffic condition B in accordance with the Design widths of pavement for turning roads;
If the radius = 215 ft; the value for the width of the turning roadway for this conditions = 15ft
Hence; the width of the turning roadway = 15 ft
Answer:
P = 18035.25 N
Explanation:
Given
D = 10.4 mm
ΔD = 3.2 ×10⁻³ mm
E = 207 GPa
ν = 0.30
If
σ = P/A
A = 0.25*π*D²
σ = E*εx
ν = - εz / εx
εz = ΔD / D
We can get εx as follows
εz = ΔD / D = 3.2 ×10⁻³ mm / 10.4 mm = 3.0769*10⁻⁴
Now we find εx
ν = - εz / εx ⇒ εx = - εz / ν = - 3.0769*10⁻⁴ / 0.30 = - 1.0256*10⁻³
then
σ = E*εz = (207 GPa)*(-1.0256*10⁻³) = - 2.123*10⁸ Pa
we have to obtain A:
A = 0.25*π*D² = 0.25*π*(10.4*10⁻3)² = 8.49*10⁻⁵ m²
Finally we apply the following equation in order o get P
σ = P/A ⇒ P = σ*A = (- 2.123*10⁸Pa)*(8.49*10⁻⁵ m²) = 18035.25 N