1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sergio [31]
3 years ago
6

A Pelton wheel is supplied with water from a lake at an elevation H above the turbine. The penstock that supplies the water to t

he wheel is of length , diameter D, and friction factor f. Minor losses are negligible. Show that the power developed by the turbine is maximum when the velocity head at the nozzle exit is 2H/3. Note: The result of Problem 12.61 may be of use.
Engineering
1 answer:
gayaneshka [121]3 years ago
7 0

Answer:

Following are the proving to this question:

Explanation:

\frac{D_1}{D} = \frac{1}{(2f(\frac{l}{D}))^{\frac{1}{4}}}

using the energy equation for entry and exit value :

\to \frac{p_o}{y} +\frac{V^{2}_{o}}{2g}+Z_0  = \frac{p_1}{y} +\frac{V^{2}_{1}}{2g}+Z_1+ f \frac{l}{D}\frac{V^{2}}{2g}

where

\to p_0=p_1=0\\\\\to Z_0=Z_1=H\\\\\to v_0=0\\\\AV =A_1V_1 \\\\\to V=(\frac{D_1}{D})^2 V_1\\\\\to V^2=(\frac{D_1}{D})^4 V^{2}_{1}

         = (\frac{1}{(2f (\frac{l}{D} ))^{\frac{1}{4}}})^4\  V^{2}_{1}\\\\

         = \frac{1}{(2f (\frac{l}{D})  )} \  V^{2}_{1}\\

\to \frac{p_o}{y} +\frac{V^{2}_{o}}{2g}+Z_0  =\frac{p_1}{y} +\frac{V^{2}_{1}}{2g}+Z_1+ f \frac{l}{D}\frac{V^{2}}{2g} \\\\

\to 0+0+Z_0 = 0  +\frac{V^{2}_{1} }{2g} +Z_1+ f \frac{l}{D} \frac{\frac{1}{(2f(\frac{l}{D}))}\ V^{2}_{1}}{2g}   \\\\\to Z_0 -Z_1 = +\frac{V^{2}_{1}}{2g} \ (1+f\frac{l}{D}\frac{1}{(2f(\frac{l}{D}) )} )  \\\\\to H= \frac{V^{2}_{1}}{2g} (\frac{3}{2}) \\\\\to  \frac{V^{2}_{1}}{2g} = H(\frac{3}{2})

L.H.S = R.H.S

You might be interested in
How would an engineer know if a product design were feasible?
Masteriza [31]
- the last one ‘design meets all the criteria...’
8 0
3 years ago
Read 2 more answers
A Pelton wheel is supplied with water from a lake at an elevation H above the turbine. The penstock that supplies the water to t
gayaneshka [121]

Answer:

Following are the proving to this question:

Explanation:

\frac{D_1}{D} = \frac{1}{(2f(\frac{l}{D}))^{\frac{1}{4}}}

using the energy equation for entry and exit value :

\to \frac{p_o}{y} +\frac{V^{2}_{o}}{2g}+Z_0  = \frac{p_1}{y} +\frac{V^{2}_{1}}{2g}+Z_1+ f \frac{l}{D}\frac{V^{2}}{2g}

where

\to p_0=p_1=0\\\\\to Z_0=Z_1=H\\\\\to v_0=0\\\\AV =A_1V_1 \\\\\to V=(\frac{D_1}{D})^2 V_1\\\\\to V^2=(\frac{D_1}{D})^4 V^{2}_{1}

         = (\frac{1}{(2f (\frac{l}{D} ))^{\frac{1}{4}}})^4\  V^{2}_{1}\\\\

         = \frac{1}{(2f (\frac{l}{D})  )} \  V^{2}_{1}\\

\to \frac{p_o}{y} +\frac{V^{2}_{o}}{2g}+Z_0  =\frac{p_1}{y} +\frac{V^{2}_{1}}{2g}+Z_1+ f \frac{l}{D}\frac{V^{2}}{2g} \\\\

\to 0+0+Z_0 = 0  +\frac{V^{2}_{1} }{2g} +Z_1+ f \frac{l}{D} \frac{\frac{1}{(2f(\frac{l}{D}))}\ V^{2}_{1}}{2g}   \\\\\to Z_0 -Z_1 = +\frac{V^{2}_{1}}{2g} \ (1+f\frac{l}{D}\frac{1}{(2f(\frac{l}{D}) )} )  \\\\\to H= \frac{V^{2}_{1}}{2g} (\frac{3}{2}) \\\\\to  \frac{V^{2}_{1}}{2g} = H(\frac{3}{2})

L.H.S = R.H.S

7 0
3 years ago
Describe, in a general form, the equation, in time domain, that tells the voltage across a inductor, L, as a function of time wh
love history [14]

Answer:

a) V(t) = Ldi(t)/dt

b) If current is constant, V = 0

Explanation:

a) The voltage, V(t), across an inductor is proportional to the rate of change of the current flowing across it with time.

If  V represents the Voltage across the inductor

and i(t) represents the current across the inductor in time, t.

V(t) ∝ di(t)/dt

Introducing a proportionality constant,L, which is the inductance of the inductor

The general equation describing the voltage across the inductor of inductance, L, as a function of time when a current flows through it is shown below.

V(t) = Ldi(t)/dt ..................................................(1)

b) If the current flowing through the inductor is constant i.e. does not vary with time

di(t)/dt = 0   and hence the general equation (1) above becomes

V(t) = 0

4 0
4 years ago
A large tank is filled to capacity with 500 gallons of pure water. Brine containing 2 pounds of salt per gallon is pumped into t
Nataly [62]

Answer:

A) A(t) = 10(100 - t) + c(100 - t)²

B) Tank will be empty after 100 minutes.

Explanation:

A) The differential equation of this problem is;

dA/dt = R_in - R_out

Where;

R_in is the rate at which salt enters

R_out is the rate at which salt exits

R_in = (concentration of salt in inflow) × (input rate of brine)

We are given;

Concentration of salt in inflow = 2 lb/gal

Input rate of brine = 5 gal/min

Thus;

R_in = 2 × 5 = 10 lb/min

Due to the fact that the solution is pumped out at a faster rate, thus it is reducing at the rate of (5 - 10)gal/min = -5 gal/min

So, after t minutes, there will be (500 - 5t) gallons in the tank

Therefore;

R_out = (concentration of salt in outflow) × (output rate of brine)

R_out = [A(t)/(500 - 5t)]lb/gal × 10 gal/min

R_out = 10A(t)/(500 - 5t) lb/min

So, we substitute the values of R_in and R_out into the Differential equation to get;

dA/dt = 10 - 10A(t)/(500 - 5t)

This simplifies to;

dA/dt = 10 - 2A(t)/(100 - t)

Rearranging, we have;

dA/dt + 2A(t)/(100 - t) = 10

This is a linear differential equation in standard form.

Thus, the integrating factor is;

e^(∫2/(100 - t)) = e^(In(100 - t)^(-2)) = 1/(100 - t)²

Now, let's multiply the differential equation by the integrating factor 1/(100 - t)².

We have;

So, we ;

(1/(100 - t)²)(dA/dt) + 2A(t)/(100 - t)³ = 10/(100 - t)²

Integrating this, we now have;

A(t)/(100 - t)² = ∫10/(100 - t)²

This gives;

A(t)/(100 - t)² = (10/(100 - t)) + c

Multiplying through by (100 - t)²,we have;

A(t) = 10(100 - t) + c(100 - t)²

B) At initial condition, A(0) = 0.

So,0 = 10(100 - 0) + c(100 - 0)²

1000 + 10000c = 0

10000c = -1000

c = -1000/10000

c = -0.1

Thus;

A(t) = 10(100 - t) + -0.1(100 - t)²

A(t) = 1000 - 10t - 0.1(10000 - 200t + t²)

A(t) = 1000 - 10t - 1000 + 20t - 0.1t²

A(t) = 10t - 0.1t²

Tank will be empty when A(t) = 0

So, 0 = 10t - 0.1t²

0.1t² = 10t

Divide both sides by 0.1t to give;

t = 10/0.1

t = 100 minutes

6 0
3 years ago
What is a radio wave made up of? Molecules? Electrons? Other?
mafiozo [28]

Radio waves are radiated by charged particles when they are accelerated. They are produced artificially by time-varying electric currents, consisting of electrons flowing back and forth in a specially-shaped metal conductor called an antenna. ... Radio waves are received by another antenna attached to a radio receiver.

4 0
3 years ago
Read 2 more answers
Other questions:
  • A soil had a liquid limit of 44, a plastic limit of 21, and a shrinkage limit of 14. In the summer, the in situ water content wa
    14·1 answer
  • Explain how a CO2 cartridge powers the dragster you will be building. A good website to use is How Stuff Works. (howstuffworks.c
    5·2 answers
  • 1. Looking at the case study provided under the Companion Material section, what is the main problem that is addressed in this c
    13·1 answer
  • Give two methods on how powder is produced in powder metallurgy.
    5·2 answers
  • Write a complete C++ program that is made of functions main() and rShift(). The rShift() function must be a function without ret
    7·1 answer
  • The mechanical properties of a metal may be improved by incorporating fine particles of its oxide. Given that the moduli of elas
    5·1 answer
  • Exhaust gases entering a convergent nozzle have a total pressure (Pt) of 200 kPa and total temperature (Tt) of 800 K. The gases
    5·2 answers
  • Find the remaining trigonometric functions of 0 if
    10·1 answer
  • I want to know if anyone else know how to tell apart real leather from fake leather?!?!
    6·2 answers
  • For some alloy, the yield stress is 345-MPa (50,000-psi) and the elastic modulus (E) is 103-GPa (15x106 psi). What is the maximu
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!