The answer is one apothecary pound = 12 ounces
I believe the correct answer from the choices listed above is option B. In a food chain. it is the producers trophic level that contains <span>the greatest amount of energy since it is the very start of the chain. Most of the energy are being stored and passed to the next organism. Hope this answers the question.</span>
Answer:
<em>Both energies are equal when the rock has fallen 20 m or equivalently when it is at a height of 20 m.</em>
Explanation:
<u>Potential and Kinetic Energy</u>
The gravitational potential energy is the energy an object has due to its height above the ground. The formula is

Where:
m = mass of the object
g = acceleration of gravity (9.8~m/s^2)
h = height
Note we can also use the object's weight W=mg into the formula:

The kinetic energy is the energy an object has due to its speed:

Where v is the object's speed.
Initially, the object has no kinetic energy because it's assumed at rest.
The W=30 N rock falls from a height of h=40 m, thus:

Since the sum of the kinetic and potential energies is constant:
U' + K' = 1,200 J
Here, U' and K' are the energies at any point of the motion. Since both must be the same:
U' = K' = 600 J
U'=Wh'=600
Solving for h':

Both energies are equal when the rock has fallen 20 m or equivalently when it is at a height of 20 m.
Answer:
<h2>9.375Nm</h2>
Explanation:
The formula for calculating torque τ = Frsin∅ where;
F = applied force (in newton)
r = radius (in metres)
∅ = angle that the force made with the bar.
Given F= 25N, r = 0.75m and ∅ = 30°
torque on the bar τ = 25*0.75*sin30°
τ = 25*0.75*0.5
τ = 9.375Nm
The torque on the bar is 9.375Nm