The initial velocity of the stone is 0 ft/s. Given the initial velocity (Vi), final velocity (Vf), and acceleration due to gravity (g), the distance may be calculated through the equation,
d = ((Vf)² - (Vi)²) / 2g
Substituting the known values,
d = ((96 ft/s)² - 0))/ (2x32.2)
The value of d is 143.10 ft.
Answer:
16250 kgm/s due south
Explanation:
Applying,
M = mv................. Equation 1
Where M = momentum, m = mass, v = velocity.
From the car,
Given: m = 1000 kg, v = 6.5 m/s
Substitute these values into equation 1
M = 1000(6.5)
M = 6500 kgm/s
For the truck,
Given: m = 3500 kg, v = 6.5 m/s
Substitute these values into equation 1
M' = 3500(6.5)
M' = 22750 kgm/s.
Assuming South to be negative direction,
From the question,
Total momentum of the two vehicles = (6500-22750)
Total momentum of the two vehicles = -16250 kgm/s
Hence the total momentum of the two vehicles is 16250 kgm/s due south
Explanation:
Given that,
A ball is tossed straight up with an initial speed of 30 m/s
We need to find the height it will go and the time it takes in the air.
At its maximum height, its final speed, v = 0 and it will move under the action of gravity. Using equation of motion :
v = u +at
Here, a = -g
v = u -gt
i.e. u = gt

So, the time for upward motion is 3.06 seconds. It means that it will in air for 3.06×2 = 6.12 seconds
Let d is the maximum distance covered by it.

Putting all values

Hence, it will go to a height of 45.91 m and it will in the air for 6.12 seconds.
write out what you have on both sides, then just use basic multiplication to try and even out both sides. I can help if you need me to balance some for you!!
Answer:
Magnitude of Vector = 79.3
Explanation:
When a vector is resolved into its rectangular components, it forms two vector components. These components are named as x-component and y-component, they are calculated by the following formulae:
x-component of vector = (Magnitude of Vector)(Cos θ)
y-component of vector = (Magnitude of Vector)(Sin θ)
where,
θ = angle of the vector with x-axis = 27°
Therefore, using the values in the equation of y-component, we get:
36 = (Magnitude of Vector)(Sin 27°)
Magnitude of Vector = 36/Sin 27°
<u>Magnitude of Vector = 79.3</u>