Wood has a lower density than water, and thus the upward buoyant force provided by the water is equal to the weight of the wood submerged.
Penny has a smaller density
I would say wood would be ur best option.
In accordance with the definition of density as r = m/V, in order to determine the density of
matter, the mass and the volume of the sample must be known.
The determination of mass can be performed directly using a weighing instrument.
The determination of volume generally cannot be performed directly. Exceptions to this rule
include
· cases where the accuracy is not required to be very high, and
· measurements performed on geometric bodies, such as cubes, cuboids or cylinders, the volume
of which can easily be determined from dimensions such as length, height and diameter.
· The volume of a liquid can be measured in a graduated cylinder or in a pipette; the volume of
solids can be determined by immersing the sample in a cylinder filled with water and then
measuring the rise in the water level.
Because of the difficulty of determining volume with precision, especially when the sample has a
highly irregular shape, a "detour" is often taken when determining the density, by making use of the
Archimedean Principle, which describes the relation between forces (or masses), volumes and
densities of solid samples immersed in liquid:
From everyday experience, everyone is familiar with the effect that an object or body appears to
be lighter than in air – just like your own body in a swimming pool.
Figure 3: The force exerted by a body on a spring scale in air (left) and in water (right)
I think its true, I think.
Difference exists mainly in the label for x axis.
Explanation:
- Shapes of waveform and vibration graphs are same.
- Vibration graphs shows the particle at a single location in the path of the wave when time passes.
- Waveform graphs shows the particle at multiple locations at a single moment of time.
<h3><u>Answer;</u></h3>
Eddy currents
<h3><u>Explanation</u>;</h3>
- <em><u>Eddy currents are currents which circulate in conductors like swirling eddies in a stream. These currents are induced by changing magnetic fields and flow in closed loops, perpendicular to the plane of the magnetic field. </u></em>
- They are created as a result of change in the intensity or direction of a magnetic field on a conductor, this occurs either when a conductor is moving through a magnetic field, or when the magnetic field surrounding a stationary conductor is varying