Answer:
0.00225 N/m
Explanation:
Parameters given:
Current in first wire, I(1) = 15A
Current in second wire, I(2) = 15A
Distance between two wires, R = 1cm = 0.01m
The force per unit length between two current carrying wires is:
F/L = μ₀I(1)I(2)/2πR
μ₀ = 4π * 10^(-7) Tm/A
F/L = [4π * 10^(-7) * 15 * 15] / (2π * 0.01)
F/L = 2.25 * 10^(-3) N/m or 0.00225 * 10^(-3) N/m
There are 3 bases before you reach home plate.
Answer:
b. less than w.
Explanation:
In this question, the application of length contraction is what helps us come to our conclusion. When an object moves very fast (relative to the observer), the length of the object seems to be smaller than it actually is (again, for the observer).
This is supported by the length contraction equation below:
L = 
Here, L is the observed length
is the original length of the object
v is the relative speed between the object and the observer
and c is the speed of light
Using this equation, we can see that as the speed between the object and the observer is increased to be close to that of light, the square root in the equation gives us values less than 1.0
This effectively decreases the length that is observed.
Answer:
The direction of the field is downward, and negatively charged particles will experience an upwards force due to the field.
F = N e E where E is the value of the field and N e the charge Q
M g = N e E and M g is the weight of the drop
N = M g / (e E)
N = 1.1E-4 * 9.8 / (1.6E-19 * 370) = 1.1 * 9.8 / (1.6 * 370) * E15 = 1.82E13
.00011 kg is a very large drop
Q = N e = M g / E = .00011 * 9.8 / 370 = 2.91E-6 Coulombs
Check: N = Q / e = 2.91E-6 / 1.6E-19 = 1.82E13 electrons
Answer;
2 g/cm³ or 2000 kg/m³
Solution;
Density is given by dividing the mass of a substance by its volume.
Density = Mass/volume
Mass = 36 g
Volume = length × width × height
= 6 cm × 3 cm × 1 cm
= 18 cm ³
Therefore;
Density = 36 g/ 18 cm³
= 2 g/cm³ or 2000 kg/m³