Answer:
well there are many ways to prevent a pest infestation ..... as we all know ... insects such as ants love leftovers, so store food in airtight containers like Tupperware or jars with rubber seals on the lids.
Keep a tight lid on your trash can at all times and move the trash to an outside dumpster as soon as possible.
Clean your counter tops, tables, and floors on a regular basis to prevent crumbs or food buildup
Explanation:
Hope this helps:)
Ionic compounds are compounds that are formed together by a cation and an anion. A cation is an ion with a positive charge. For example, Na+ and Ca2+. An ion has a negative charge, like Cl- and OH-. There is a greater chance of forming an ionic compound when they have a great difference in electronegativity, the ability to attract electrons toward itself. In the periodic table, elements that are opposite to each other, more likely found in opposite sides, would be more apt to form an ionic compound. Example would be NaCl and CaCl2 or Ca(OH)2.
Answer:
3.91 moles of Neon
Explanation:
According to Avogadro's Law, same volume of any gas at standard temperature (273.15 K or O °C) and pressure (1 atm) will occupy same volume. And one mole of any Ideal gas occupies 22.4 dm³ (1 dm³ = 1 L).
Data Given:
n = moles = <u>???</u>
V = Volume = 87.6 L
Solution:
As 22.4 L volume is occupied by one mole of gas then the 16.8 L of this gas will contain....
= ( 1 mole × 87.6 L) ÷ 22.4 L
= 3.91 moles
<h3>2nd Method:</h3>
Assuming that the gas is acting ideally, hence, applying ideal gas equation.
P V = n R T ∴ R = 0.08205 L⋅atm⋅K⁻¹⋅mol⁻¹
Solving for n,
n = P V / R T
Putting values,
n = (1 atm × 87.6 L)/(0.08205 L⋅atm⋅K⁻¹⋅mol⁻¹ × 273.15K)
n = 3.91 moles
Result:
87.6 L of Neon gas will contain 3.91 moles at standard temperature and pressure.
Answer:
The temperature for
Explanation:
The three thermodinamic properties (enthalpy, entropy and Gibbs's energy) are linked in the following formula:
Where:
is Gibbs's energy in kJ
is the enthalpy in kJ
is the entropy in kJ/K
is the temperature in K
Solving:
For :