F = (mass)(acceleration) = ma
m = 0.25 kg
Vi = 16 m/s
t = 2 s
Vf = 0 m/s (since it was put to stop)
a=(Vf-Vi)/t
a=(0-16)/2
a = 8 m/s^2 (decelerating)
F = ma = (0.25 kg)(8 m/s^2)
F = 2 N
<span>Hope
this answer will be a good h<span>elp for you.</span></span>
acceleration = change in velocity /change in time
convert 40km to meter then divide it with 5
Answer:
N = 177843 sheets
Explanation:
We are given;
Mass;m = 0.0035 kg
Pressure; p = 101325 pa = 101325 N/m²
L = 0.279m
W = 0.216m
The weight of N sheets is N(mg)
Where;
m is the mass of one sheet
N is number of sheets
g is the acceleration due to gravity.
The pressure equals weight divided by the area on which the weight presses:
Thus,
p= F/A = Nmg/(L•W)
Therefore, making N the subject;
N = pLW/(mg)
N = 101325 x 0.279 x 0.216/ (0.0035 x 9.81)
N = 177843
Answer:
A) Earth and the other inner planets have higher average surface temperatures than the outer planets.
Explanation:
the earth and the other inner planets have higher average surface temperatures than the outer planets.
The reason for this response is due to the distance between the sun and the respective planet, the source of energy generation is the sun and the only way in which the temperature increase of each planet is guaranteed is by radiation, the further away a planet is from its star, its temperature will decrease. Although it is also important to highlight the atmospheric composition of the planet if this planet in its stratosphere has high density clouds that do not allow the entry of solar radiation, the temperature of the planet's surface will not increase, independent of the distance from the sun, but these are more complex cases where specialists in that area enter to perform a study in detail.