Answer:
330.24 Hz
Explanation:
Given:
Frequency, f = 320 Hz
L1 = 25.8 cm
L2 = 78.4 cm
L3 = 131.1 cm
Let the wavelength be λ
Then, L1 which is the length of the column of air is λ/4.
λ/4 = 25.8 cm
λ = 25.8 × 4 = 103.2 cm = 1.032 m
Then, speed of sound in air is:
v = λ f
⇒ v = 1.032 × 320 Hz
⇒ v = 330.24 m/s
Answer:
greater acceleration is experienced by the car with lower mass
Explanation:
Since both the toys are connected by same spring so the force due to spring on both the toys will be same and it is given as

now we know by Newton's II law

so here we have

here we have same force on both the blocks
so acceleration will be more if mass is less
so greater acceleration is experienced by the car with lower mass
The tension in the string with friction would be the biggest because of the involvement of the force of gravity. This would result in that the friction force that is acting on the system. There is no friction in the frictionless system, and only the force of gravity is relevant.
The fraction of energy that is lost is 25%, it depends how fast the ball was going until it lost 25% of its energy, the gravitational energy was transferred into the kinetic energy that helped the ball bounce back
Answer:
Maximum Tension=224N
Minimum tension= 64N
Explanation:
Given
mass =8 kg
constant speed = 6m/s .
g=10m/s^2
Maximum Tension= [(mv^2/ r) + (mg)]
Minimum tension= [(mv^2/ r) - (mg)]
Then substitute the values,
Maximum Tension= [8 × 6^2)/2 +(8×9.8)] = 224N
Minimum tension= [8 × 6^2)/2 -(8×9.8)]
=64N
Hence, Minimum tension and maximum Tension are =64N and 2224N respectively