1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Fantom [35]
3 years ago
15

A football player runs down the field with a speed of 8 m/s. How long will it

Physics
1 answer:
Aleksandr [31]3 years ago
5 0
It’s C :/ the other guy is wrong
You might be interested in
An athlete completes 1 laps around a track with a radius of 25 meters in 180 seconds. What is the magnitude of the athlete's tan
DanielleElmas [232]

Answer:

0.872<em>m/s</em>

Explanation:

Tangential velocity is given by the formula,

v= 2\pi r/ t

In the question given,

radius= 25meters

time= 180secs

pie= 3.14

number of laps= 1

The magnitude of tangential velocity equals;

\frac{1lap* 2 *3.14 *25m}{180secs}

<em>v </em>= 157<em>m</em>/180<em>secs</em>

Therefore, the magnitude of the tangential velocity

=0.872<em>m/secs</em>

5 0
2 years ago
A long, straight wire lies in the plane of a circular coil with a radius of 0.018 m. the wire carries a current of 5.6 a and is
iris [78.8K]
(a) The net flux through the coil is zero.
In fact, the magnetic field generated by the wire forms concentric circles around the wire. The wire is placed along the diameter of the coil, so we can imagine as it divides the  coil into two emisphere. Therefore, the magnetic field of the wire is perpendicular to the plane of the coil, but the direction of the field is opposite in the two emispheres. Since the two emispheres have same area, then the magnetic fluxes in the two emispheres are equal but opposite in sign, and so they cancel out when summing them together to find the net flux.

(b) If the wire passes through the center of the coil but it is perpendicular to the plane of the wire, the net flux through the coil is still zero.
In fact, the magnetic field generated by the wire forms concentric lines around the wire, so it is parallel to the plane of the coil. But the flux is equal to
\Phi = BA \cos \theta
where \theta is the angle between the direction of the magnetic field and the perpendicular to the plane of the coil, so in this case \theta=90^{\circ} and so the cosine is zero, therefore the net flux is zero.
5 0
3 years ago
The histogram below shows the number of downloads of a song over time.
Allisa [31]

Given data:

  • It is a graphical display where the data is grouped in to ranges
  • A diagram consists rectangles, whose area is proportional to frequency of a variable and whose width is equal to the class interval.
  • It is an accurate representation of the distribution of numerical data.

<em>From Figure:</em>  

        Each box in the graph (small rectangle box) is assumed to be one download. So, in the graph the time between 8 p.m to 9 p.m, the number of downloads are 8.75 approximately (because the last box is incomplete, therefore 8 complete boxes and 9th is more than half).

<em>So, We conclude that the total number of downloads are approximately 9 in the time span of 8 p.m. to 9 p.m.</em>

7 0
2 years ago
Can you explain that gravity pulls us to the Earth &amp; can you calculate weight from masses on both on Earth and other planets
schepotkina [342]
I don't actually understand what your question is, but I'll dance around the subject
for a while, and hope that you get something out of it.

-- The effect of gravity is:  There's a <em>pair</em> of forces, <em>in both directions</em>, between
every two masses.

-- The strength of the force depends on the <em>product</em> of the masses, so it doesn't matter whether there's a big one and a small one, or whether they're nearly equal. 
It's the product that counts.  Bigger product ==> stronger force, in direct proportion.

-- The strength of the forces also depends on the distance between the objects' centers.  More distance => weaker force.  Actually, (more distance)² ==> weaker force.

-- The forces are <em>equal in both directions</em>.  Your weight on Earth is exactly equal to
the Earth's weight on you.  You can prove that.  Turn your bathroom scale face down
and stand on it.  Now it's measuring the force that attracts the Earth toward you. 
If you put a little mirror down under the numbers, you'll see that it's the same as
the force that attracts you toward the Earth when the scale is right-side-up.

-- When you (or a ball) are up on the roof and step off, the force of gravity that pulls
you (or the ball) toward the Earth causes you (or the ball) to accelerate (fall) toward the Earth. 
Also, the force that attracts the Earth toward you (or the ball) causes the Earth to accelerate (fall) toward you (or the ball).
The forces are equal.  But since the Earth has more mass than you have, you accelerate toward the Earth faster than the Earth accelerates toward you.

--  This works exactly the same for every pair of masses in the universe.  Gravity
is everywhere.  You can't turn it off, and you can't shield anything from it.

-- Sometimes you'll hear about some mysterious way to "defy gravity".  It's not possible to 'defy' gravity, but since we know that it's there, we can work with it.
If we want to move something in the opposite direction from where gravity is pulling it, all we need to do is provide a force in that direction that's stronger than the force of gravity.
I know that sounds complicated, so here are a few examples of how we do it:
-- use arm-muscle force to pick a book UP off the table
-- use leg-muscle force to move your whole body UP the stairs
-- use buoyant force to LIFT a helium balloon or a hot-air balloon 
-- use the force of air resistance to LIFT an airplane.

-- The weight of 1 kilogram of mass on or near the Earth is 9.8 newtons.  (That's
about 2.205 pounds).  The same kilogram of mass has different weights on other planets. Wherever it is, we only know one of the masses ... the kilogram.  In order
to figure out what it weighs there, we need to know the mass of the planet, and
the distance between the kilogram and the center of the planet.

I hope I told you something that you were actually looking for.
7 0
3 years ago
The peregrine falcon is the world's fastest known bird and has been clocked diving downward toward its prey at constant vertical
Sergio [31]
100m / 97.2m/s = 1.0288 seconds
7 0
3 years ago
Read 2 more answers
Other questions:
  • A hypothetical wi-fi transmission can take place at any of three speeds depending on the condition of the radio channel between
    8·1 answer
  • What is the net charge on a sphere that has the following? a) 5.29 x 10^6 electrons and 7.07 x 10^6 protons
    15·1 answer
  • A string is wrapped around a uniform disk of mass M = 1.2 kg and radius R = 0.07 m. (Recall that the moment of inertia of a unif
    13·1 answer
  • A mass on a spring will oscillate vertically when it is lifted and released how will the values of elastic potential energy and
    15·1 answer
  • While standing in a low tunnel, you raise your arms and push against the ceiling with a force of 100 n. your mass is 70 kg. what
    8·1 answer
  • If the distance between two electrons is doubles, what would happen to the electric force between them?
    8·1 answer
  • Ccording to coulomb's law, which pair of charged particles has the lowest potential energy? according to coulomb's law, which pa
    11·2 answers
  • Wet sugar that contains one-fifth water by mass is conveyed through an evaporator in which 85% of the of the entering water is e
    12·1 answer
  • a pick up truck that has a mass of 500kg travels at 8 mph it hits a motor cycle with mass of 100kg. assuming momentum is conserv
    14·1 answer
  • List the 5 components of fitness<br>​
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!