The answer would be <span>Tug Hill Plateau</span>
Answer:
1) ΔG°r(298 K) = - 28.619 KJ/mol
2) ΔG°r will decrease with decreasing temperature
Explanation:
- CO(g) + H2O(g) → H2(g) + CO2(g)
1) ΔG°r = ∑νiΔG°f,i
⇒ ΔG°r(298 K) = ΔG°CO2(g) + ΔG°H2(g) - ΔG°H2O(g) - ΔG°CO(g)
from literature, T = 298 K:
∴ ΔG°CO2(g) = - 394.359 KJ/mol
∴ ΔG°CO(g) = - 137.152 KJ/mol
∴ ΔG°H2(g) = 0 KJ/mol........pure substance
∴ ΔG°H2O(g) = - 228.588 KJ/mol
⇒ ΔG°r(298 K) = - 394.359 KJ/mol + 0 KJ/mol - ( - 228.588 KJ/mol ) - ( - 137.152 KJ7mol )
⇒ ΔG°r(298 K) = - 28.619 KJ/mol
2) K = e∧(-ΔG°/RT)
∴ R = 8.314 E-3 KJ/K.mol
∴ T = 298 K
⇒ K = e∧(-28.619/(8.314 E-3)(298) = 9.624 E-6
⇒ ΔG°r = - RTLnK
If T (↓) ⇒ ΔG°r (↓)
assuming T = 200 K
⇒ ΔG°r(200 K) = - (8.314 E-3)(200)Ln(9.624E-3)
⇒ ΔG°r (200K) = - 19.207 KJ/mol < ΔG°r(298 K) = - 28.619 KJ/mol
B, C and E. In radioactive decay unstable atoms stabilize by releasing energy.
Answer:
-191.7°C
Explanation:
P . V = n . R . T
That's the Ideal Gases Law. It can be useful to solve the question.
We replace data:
2.5 atm . 8 L = 3 mol . 0.082 L.atm/mol.K . T°
(2.5 atm . 8 L) / (3 mol . 0.082 L.atm/mol.K) = T°
T° = 81.3 K
We convert T° from K to C°
81.3K - 273 = -191.7°C