Answer:
The work done is 205 kJ.
Explanation:
Hi there!
Work can be calculated using the following equation:
W = F · Δx
Where:
W = work
F = applied force
Δx = displacement
In this case, the force varies with the position, so we can divide the traveled distance in very small parts and calculate the work done over each part of the trajectory. Then, we have to sum all the works and we will obtain the work done from the initial position (xi) to the final position (xf). This is the same as saying:
W = ∫ F · dx
F = 3.6 N/m³ · x³ - 76 N
W = ∫ (3.6 x³ - 76)dx
W = 0.9 x⁴ - 76x
Evaluating from xi to xf:
W = 0.9 N/m³ (21.9 m)⁴ - 76 N · 21.9 m - 0.9 N/m³(5.41 m)⁴ + 76 N · 5.41 m
W = 205 kJ
To answer this question, we should know the formula for the terminal velocity. The formula is written below:
v = √(2mg/ρAC)
where
m is the mass
g is 9.81 m/s²
ρ is density
A is area
C is the drag coefficient
Let's determine the mass, m, to be density*volume.
Volume = s³ = (1 cm*1 m/100 cm)³ = 10⁻⁶ m³
m = (1.6×10³ kg/m³)(10⁻⁶ m³) = 1.6×10⁻³ kg
A = (1 cm * 1 m/100 cm)² = 10⁻⁴ m²
v = √(2*1.6×10⁻³ kg*9.81 m/s²/1.6×10³ kg/m³*10⁻⁴ m²*0.8)
<em>v = 0.495 m/s</em>
Explanation:
13 cmHg (centimeters of mercury) is the pressure at the bottom of a column of mercury 13 cm deep. It is the equivalent of about 17.3 kPa or 2.5 psi.
Technically this is a Biology question;
The 'amount' we can see depends on how much light can get through our pupil to hit our retina.
When there is a lot of light the pupil is small; it doesn't need to be big to let a lot of light in.
When we move to a dark space there is much less light, so the pupil 'dilates' to let enough light so we can see properly.
The period in which one cant see is simply when the pupil hasn't had time to change shape yet so doesn't let in enough light.<span />