A proton is held at rest in a uniform electric field. When it is released, the proton will lose its kinetic energy.
Kinetic energy
The energy an object has as a result of motion is known as kinetic energy in physics. It is described as the effort required to move a mass-determined body from rest to the indicated velocity. The body holds onto the kinetic energy it acquired during its acceleration until its speed changes. The body exerts the same amount of effort when slowing down from its current pace to a condition of rest. Formally, kinetic energy is any term that includes a derivative with respect to time in the Lagrangian of a system.
To learn more about kinetic energy refer here:
brainly.com/question/11301578
#SPJ4
Answer:
The correct answer should be
A. 20 Joules
Explanation:
I'm taking the K12 Unit Test: Energy - Part 1 right now
Answer:
v = 98.75 km/h
Explanation:
Given,
The distance driver travels towards the east, d₁ = 135 km
The time period of the travel, t₁ = 1.5 h
The halting time, tₓ = 46 minutes
The distance driver travels towards the east, d₂ = 215 km
The time period of the travel, t₁ = 2 h
The average speed of the vehicle before stopping
v₁ = d₁/t₁
= 135/1.5
= 90 km/h
The average speed of vehicle after stopping
v₂ = d₂/t₂
= 215/2
= 107.5 km/h
The total average velocity of the driver
v = (v₁ +v₂) /2
= (90 + 107.5)/2
= 98.75 km/h
Hence, the average velocity of the driver, v = 98.75 km/h
Mass of yellow train, my = 100 kg
Initial Velocity of yellow train, = 8 m/s
mass of orange train = 200 kg
Initial Velocity of orange train = -1 m/s (since it moves opposite direction to the yellow train, we will put negative to show the opposite direction)
To calculate the initial momentum of both trains, we will use the principle of conservation of momentum which
The sum of initial momentum = the sum of final momentum
Since the question only wants the sum of initial momentum,
(100)(8) + (200)(-1) = 600 m/s