The kinetic energy K = 0.5 * m * v² must be equal to the potential energy U = m * g * h.
m mass
v velocity
h height
g = 9.81m/s²
The mass m cancels out:
0.5 * v² = g * h
Solve for height h and transform to distance traveled.
(sin (4°) = height / distance)
The continent of Antartica is located at the bottom of the world. the South Pole is at its center. Antarctica is the coldest and windiest place on earth. It is covered with ice up to 3 miles thick. Very few plants and animals can survive here, but penguins, fish, and seals live on the coast and in the seas. No people live on Antarctica permanently, but scientists and tourists visit.
a) At a position of 2.0m, the Initial energy is
all made up of the potential energy=m*g*hi<span>
and meanwhile at 1.5 all its energy is also potential energy=m*g*hf
The percentage of energy remaining is E=m*g*hi/m*g*hf x 100
and since mass and gravity are constant so it leaves us with
just E=hi/hf
which 1.5/2.0 x100= 75% so we see that we lost 25% of the
energy or 0.25 in fraction
b) Here use the equation vf^2=vi^2+2gd
<span>where g is gravity, vf is the final velocity and vi is the
initial velocity while d is the distance travelled
so in here we are looking for the vi so let us isolate that
variable
we know that at maximum height or peak, the velocity is 0 so
vf is 0
therefore,</span></span>
vi =sqrt(-2gd) <span>
vi =sqrt(-2x-9.81x1.5) </span>
<span>vi =5.4 m/s
<span>c) The energy was converted to heat due to friction with the
air and the ground.</span></span>
Answer:
if we ever ride a airplane we dont mess up its signals and crash ,and its easier to ignore calls and texts
Explanation:
I'm stuck on the same question, as well :(