Answer:
The answer to your question is: 13.2 m/s
Explanation:
final speed (fs) = 77 m/s
t = 6.5 s
gravity (g) = 9.81 m/s2
initial speed (is) = ?
Formula
fs = is + gt from this equation we clear "is" = fs - gt
Substitution is = 77 - (9,81)(6.5)
Process is = 77 - 63.8
is = 13.2 m/s
The most common liquid on planet earth is water
<h3>In macroeconomic theory,liquidity preference is the demand for money, considered as liquidity.</h3>
There are missing data in the text of the problem (found them on internet):
- speed of the car at the top of the hill:

- radius of the hill:

Solution:
(a) The car is moving by circular motion. There are two forces acting on the car: the weight of the car

(downwards) and the normal force N exerted by the road (upwards). The resultant of these two forces is equal to the centripetal force,

, so we can write:

(1)
By rearranging the equation and substituting the numbers, we find N:

(b) The problem is exactly identical to step (a), but this time we have to use the mass of the driver instead of the mass of the car. Therefore, we find:

(c) To find the car speed at which the normal force is zero, we can just require N=0 in eq.(1). and the equation becomes:

from which we find
Answer:

Explanation:
From the question we are told that:
Mass 
Charge 
Velocity 
Length of Wire 
Current 
Generally the equation for Magnetic Field of Wire B is mathematically given by



Generally the equation for Force on the plane F is mathematically given by

Therefore




Therefore in Terms of g's

