Answer:
K = 9.53 MeV
Explanation:
The kinetic energy that the alpha particle has emitted, is the energy in excess after removing the resting energy of the atoms and the helium nucleus that forms the alpha particle
Since energy and masses are related and cannot be
m₀ c² =
c² + m_He c²+ K
K = c² (m₀ - m_{f} - m_He)
the mass of the Helium atom is 4 u
K = (3 10⁸)² (211,988868 -207.976652 - 4,002) 1,661 10⁻²⁷
K = 14,949 10⁻¹¹ (0.0102)
K = 1,527 10⁻¹² J
let's reduce 1 J = 6,242 10¹² MeV
K = 9.53 MeV
Answer: A
Explanation:Earthquakes occur on faults - strike-slip earthquakes occur on strike-slip faults, normal earthquakes occur on normal faults, and thrust earthquakes occur on thrust or reverse faults. When an earthquake occurs on one of these faults, the rock on one side of the fault slips with respect to the other.
Answer:
True
Explanation:
The complete question is:
<em>"Although the reactions of the Calvin cycle do not depend directly on light, they do not usually occur at night. True o False"</em>
<em>
</em>The Calvin cycle is also known as the Calvin-Benson cycle or as the CO₂ fixation phase in the photosynthesis process.
The Calvin cycle generates the reactions necessary to fix the carbon in a solid structure for the formation of glucose and, in turn, regenerates the molecules for the continuation of the cycle.
The Calvin cycle is known as the dark phase of photosynthesis, or the carbon fixation phase. It is called the dark phase because this cycle is not dependent on light like other parts that make up the photosynthesis process. But it uses the energy that is produced in the light phase of photosynthesis to fix carbon.
It can be said that it consists of or forms the second stage of photosynthesis, in which the carbon of the carbon dioxide that is absorbed is fixed.
So, the statement is true because the Calvin cycle uses the energy that is produced in the light phase of photosynthesis to fix carbon.
Answer:
I think the answer is option D ...
bt I m not sure..
Answer:
The answer to your question is W = 3695464.4 J
Explanation:
Mechanical work is the force applied to an object multiply by the distance this object move as a consequence of the force.
Formula
Work = W (J)
Force = F (N)
distance = d (m)
W = F x d
Substitution
F = 6818.2 N
d = 542 m
W = 6818.2 x 542
Simplification and result
W = 3695464.4 J