Answer: Entropy is the measure of the disorder of a system
Explanation:
Entropy is a thermodynamic quantity defined as a criterion to predict the evolution or transformation of thermodynamic systems. In addition, it is used to measure the degree of organization of a system.
In other words: Entropy is the measure of the disorder of a system and is a function of state. That is, it depends only on the state of the system.
However, in the case of an isolated system in an <u>irreversible process</u>, the value of entropy increases in the course of a process that occurs naturally. While in a <u>reversible process</u> the entropy of the isolated system remains constant.
Ok? I don’t know what you want me to do though
(i) The total capacitance for the circuit is 5 μF.
(ii) The total charge stored in the circuit is 1 x 10⁻⁴ C.
(iii) The charge stored in 3μF capacitor is 6 x 10⁻⁶ C.
<h3>Total capacitance of the circuit</h3>
The total capacitance of the circuit is determined by reolving the series capacitors separate and parallel capacitors separate as well.
<h3>C1 and C2 are in series </h3>
<h3>C1 and C2 are parallel to C3</h3>
<h3>C(123) is series to C5 and C6</h3>
<h3>C7 and C8 are in series</h3>
<h3>Total capaciatnce of the circuit</h3>
Ct + C(78) = 2 μF + 3 μF = 5 μF
<h3 /><h3>Total charge stored in the circuit</h3>
The total charge stored in the capacitor is calculated as follows;
Q = CV
Q = (5 x 10⁻⁶) x (20)
Q = 1 x 10⁻⁴ C
<h3>Charge stored in 3μF capacitor</h3>
Q = (3 x 10⁻⁶) x (20)
Q = 6 x 10⁻⁶ C
Learn more about capacitance of capacitor here: brainly.com/question/13578522
Explanation:
800 km per her because you have to divide 7200 by 9
Answer:
Reorder the steps so that step 4 appears before step 3
Explanation:
In a nuclear power plant, we have;
1) Nuclear reaction between the radio active species and the particles takes place to generate energy in the nucleus of atoms
2) The nuclear energy in the atom is converted into radiant energy, which is the energy found in light, and thermal (heat) energy
3) The produced radiant and thermal energy is released as heat and light
4) With the produced heat, steam is generated
5) The generated steam turns the steam turbines and produced mechanical energy
6) The produced mechanical energy is then converted into electrical energy in the electrical generator of the power plant
To correct Savion's error, Step 4) the light and heat should be released before step 3) the released heat can be used to generate steam, we therefore reorder the steps so that step 4 appears before step 3.