<h3><u>Given</u><u>:</u><u>-</u></h3>
Acceleration,a = 3 m/s²
Initial velocity,u = 0 m/s
Final velocity,v = 12 m/s
<h3><u>To</u><u> </u><u>be</u><u> </u><u>calculated:-</u><u> </u></h3>
Calculate the time take by a car.
<h3><u>Solution:-</u><u> </u></h3>
According to the first equation of motion:
v = u + at
★ Substituting the values in the above formula,we get:
⇒ 12 = 0 + 3 × t
⇒ 12 = 3t
⇒ 3t = 12
⇒ t = 12/3
⇒ t = 4 sec
Objects in free fall, disregarding terminal velocity, accelerate at 9.8(m/s)/s. so for every second it was falling, it gained 9.8m/s in speed. 9.8 * 10 = 98m/s
Answer:
Archimedes' principle states that the upward buoyant force that is exerted on a body immersed in a fluid, whether fully or partially, is equal to the weight of the fluid that the body displaces. Archimedes' principle is a law of physics fundamental to fluid mechanics.
Based on Newton's principle, whenever objects A and B interact with each other, they exert forces upon each other.
When a horse pulls on a cart, t<span>he horse exerts a force only to the cart. But that force applies only to the cart, not to the horse.
The cart in turn exerts a force on the horse. But that force applies only to the horse, not the cart also.
</span>
There are two forces resulting from this interaction - a force on the horse and a force on the cart. T<span>he net force on the cart remains as it was --- a positive force in the direction of the horse's movement. Therefore, the cart begins to accelerate and move.</span><span>
</span>
Close the switch would be the correct answer