I think it is "Known".
Radioactive decay is measured using a formula where the half-life <span>of an isotope is the time it takes for the original nuclei to decay half of its original amount.</span>
S₂O₈²⁻
(aq) + 2I⁻
(aq) → I₂(aq) + 2SO₄
²⁻(aq)
2S₂O₃²⁻
(aq) + I₂(aq) → S₄O₆²⁻
(aq) + 2I⁻
(aq)
<u>Explanation:</u>
S₂O₈²⁻
(aq) + 2I⁻
(aq) → I₂(aq) + 2SO₄
²⁻(aq)
To measure the rate of this reaction we must measure the rate of concentration change of one of the reactants or products. To do this, we will include (to the reacting S₂O₈
²⁻ and I⁻
i) a small amount of sodium thiosulfate, Na₂S₂O₃,
ii) some starch indicator.
The added Na₂S₂O₃ does not interfere with the rate of above reaction, but it does consume the I₂ as soon as it is formed.
2S₂O₃²⁻
(aq) + I₂(aq) → S₄O₆²⁻
(aq) + 2I⁻
(aq)
This reaction is much faster than the previous, so the conversion of I2 back to I⁻ is essentially instantaneous.
![rate = \frac{dI2}{dt} = \frac{1/2 [S2O3^2^-]}{t}](https://tex.z-dn.net/?f=rate%20%3D%20%5Cfrac%7BdI2%7D%7Bdt%7D%20%3D%20%5Cfrac%7B1%2F2%20%5BS2O3%5E2%5E-%5D%7D%7Bt%7D)
Answer:
16
Explanation:
FIRST AND FOREMOST, BALANCE YOUR EQUATION.
Al + S8 ➡️ Al2S3
Numbers of Al=1. ➡️ Numbers of Al = 2
Numbers of S =8. ➡️ Numbers of S. = 3
USE COEFFICIENT TO BALANCE THE EQUATION.
16Al + 3S8 ➡️ 8Al2S3
Now the Numbers of Al and S in both sides of eqn. is balanced
The Answer Is 16
Water is called "universal solvent" because it is capable of dissolving various types of substances than any other solvent. The water's chemical composition such as its atoms that have a balance electrical charge and arrangement of polar makes it capable of dissociating different ionic compounds and balanced attraction to sodium and other elements, suitable to nature of any substances or life forms. However, this could be a problem in everyday life because given the title "universal solvent", it does not necessarily dissolve every compound. For example: water alone cannot be used in cleaning oils because it can't dissolve waxes and fats, and in dissolving large amounts of salt or sugar in our body.