Answer:
Concentration of the barium ions = ![[Ba^{2+}] = 0.4654 M](https://tex.z-dn.net/?f=%5BBa%5E%7B2%2B%7D%5D%20%3D%200.4654%20M)
Concentration of the chloride ions = ![[Cl^{-}]=0.9308 M](https://tex.z-dn.net/?f=%5BCl%5E%7B-%7D%5D%3D0.9308%20M%20)
Explanation:

Moles of hydrogen chloride = n
Volume of hydrogen chloride solution = 43.89 mL = 0.04389 L
Molarity of the hydrogen chloride = 0.1355 M


According to reaction, 2 moles of HCl reacts with 1 mole of barium hydroxide.
Then 0.05947 moles of HCl will react with:
barium hydroxide
Moles of barium hydroxide = 0.029735 mol

1 mole of barium hydroxide gives 1 mole of barium ion in an aqueous solution. Then 0.029735 moles of barium hydroxide will give:

Volume of solution after neutralization reaction :
= 20.0 mL + 43.89 mL = 63.89 mL = 0.06389 L
Concentration of the barium ions =![[Ba^{2+}]](https://tex.z-dn.net/?f=%5BBa%5E%7B2%2B%7D%5D)
![[Ba^{2+}]=\frac{0.029735 mol}{0.06389 L}=0.4654 M](https://tex.z-dn.net/?f=%5BBa%5E%7B2%2B%7D%5D%3D%5Cfrac%7B0.029735%20mol%7D%7B0.06389%20L%7D%3D0.4654%20M)

1 mole of barium chloride gives 1 mole of barium ions and 2 moles of chloride ions in an aqueous solution.
Then concentration of chloride ions will be:
![[Cl^-]=2\times [Ba^{2+}]=2\times 0.4654 M=0.9308 M](https://tex.z-dn.net/?f=%5BCl%5E-%5D%3D2%5Ctimes%20%5BBa%5E%7B2%2B%7D%5D%3D2%5Ctimes%200.4654%20M%3D0.9308%20M)
Pretty sure it's the Precambrian.
Answer: Gases are complicated. They're full of billions and billions of energetic gas molecules that can collide and possibly interact with each other. Since it's hard to exactly describe a real gas, people created the concept of an Ideal gas as an approximation that helps us model and predict the behavior of real gases. The term ideal gas refers to a hypothetical gas composed of molecules which follow a few rules:
Ideal gas molecules do not attract or repel each other. The only interaction between ideal gas molecules would be an elastic collision upon impact with each other or an elastic collision with the walls of the container. [What is an elastic collision?]
Ideal gas molecules themselves take up no volume. The gas takes up volume since the molecules expand into a large region of space, but the Ideal gas molecules are approximated as point particles that have no volume in and of themselves.
If this sounds too ideal to be true, you're right. There are no gases that are exactly ideal, but there are plenty of gases that are close enough that the concept of an ideal gas is an extremely useful approximation for many situations. In fact, for temperatures near room temperature and pressures near atmospheric pressure, many of the gases we care about are very nearly ideal.
If the pressure of the gas is too large (e.g. hundreds of times larger than atmospheric pressure), or the temperature is too low (e.g.
−
200
C
−200 Cminus, 200, start text, space, C, end text) there can be significant deviations from the ideal gas law.
Explanation:
Answer:
a, b, c, d
Explanation:
Rutherford’ atomic model is based on the gold foil experiment. In this experiment, beam of alpha rays was bombarded on thin gold foil. He observed that:
Most of the alpha particles passed through thin foil without any deflection.
Few alpha particles deflected by an angle of 90o.
Based on observation, Rutherford concluded that majority of the space inside the atom is empty.
He explained defection of few alpha particles by assuming that most of the mass is concentrated at the nucleus and positively charged.
Therefore, among given, the correct statements are:
The atom contains a positively charged nucleus.
Positive charge is condensed in one location within the atom.
The majority of the space inside the atom is empty space
The mass of an atom is concentrated at the nucleus
Therefore, the correct options are:
a, b, c, d