Answer:
The answer to your question is MgSO₄ 5H₂O
Explanation:
Data
mass of MgSO₄ = 2.86 g
mass of H₂O = 2.14 g (5 - 2.86)
Process
1.- Calculate the molecular mass of the compounds
MgSO₄ = 24 + 32 + (16 x 4) = 120
H₂O = 16 + 2 = 18
2.- Convert the grams obtain to moles
120 g of MgSO₄ --------------- 1 mol
2.8 g ---------------- x
x = (2.8 x 1)/120
x = 0.024 moles
18 g of H₂O --------------------- 1 mol
2.14 g -------------------- x
x = (2.14 x 1)/18
x = 0.119
3.- Divide by the lowest number of moles
MgSO₄ = 0.024/0.024 = 1
H₂O = 0.119/ 0.024 = 5
4.- Write the molecular formula
MgSO₄5H₂O
The state of matter is liquid.
Covalent for the first one
1.Decomposition i think
2.boiling
3.It is a solid at room temperature and pressure.
4.<span>The base donates a hydrogen ion.
5.That causes the oxidation of another element
6.</span>MnO2
7.When a substance is reduced, electrons are lost.
8.True I think
9.False
10.True
Hope these are correct
Answer:
0.200 m K3PO3
Explanation:
Let us remember that the freezing point depression is obtained from the formula;
ΔTf = Kf m i
Where;
Kf = freezing point constant
m = molality
i = Van't Hoff factor
The Van't Hoff factor has to do with the number of particles in solution. Let us consider the Van't Hoff factor for each specie.
0.200 m HOCH2CH2OH - 1
0.200 m Ba(NO3)2 - 3
0.200 m K3PO3 - 4
0.200 m Ca(CIO4)2 - 3
Hence, 0.200 m K3PO3 has the greatest van't Hoff factor and consequently the greatest freezing point depression.