<span>the behavior of the above pair of substances</span> is soluble
Answer:
The ΔG° is 29 kJ and the reaction is favored towards reactant.
Explanation:
Based on the given information, the ΔH°rxn or enthalpy change is 41.2 kJ, the ΔS°rxn or change in entropy is 42.1 J/K or 42.1 * 10⁻³ kJ/K. The temperature given is 289 K. Now the Gibbs Free energy change can be calculated by using the formula,
ΔG° = ΔH°rxn - TΔS°rxn
= 41.2 kJ - 289 K × 42.1 × 10⁻³ kJ/K
= 41.2 kJ - 12.2 kJ
= 29 kJ
As ΔG° of the reaction is positive, therefore, the reaction is favored towards reactant.
Answer:
8740 joules are required to convert 20 grams of ice to liquid water.
Explanation:
The amount of heat required (
), measured in joules, to convert ice at -50.0 ºC to liquid water at 0.0 ºC is the sum of sensible heat associated with ice and latent heat of fussion. That is:
(1)
Where:
- Mass, measured in grams.
- Specific heat of ice, measured in joules per gram-degree Celsius.
,
- Temperature, measured in degrees Celsius.
- Latent heat of fussion, measured in joules per gram.
If we know that
,
,
,
and
, then the amount of heat is:
![Q = (20\,g)\cdot \left\{\left(2.06\,\frac{J}{g\cdot ^{\circ}C} \right)\cdot [0\,^{\circ}C-(-50\,^{\circ}C)]+334\,\frac{J}{g} \right\}](https://tex.z-dn.net/?f=Q%20%3D%20%2820%5C%2Cg%29%5Ccdot%20%5Cleft%5C%7B%5Cleft%282.06%5C%2C%5Cfrac%7BJ%7D%7Bg%5Ccdot%20%5E%7B%5Ccirc%7DC%7D%20%5Cright%29%5Ccdot%20%5B0%5C%2C%5E%7B%5Ccirc%7DC-%28-50%5C%2C%5E%7B%5Ccirc%7DC%29%5D%2B334%5C%2C%5Cfrac%7BJ%7D%7Bg%7D%20%5Cright%5C%7D)

8740 joules are required to convert 20 grams of ice to liquid water.
Answer: Option (A) is the correct answer.
Explanation:
A covalent bond is formed when there occurs sharing of electrons between atoms.
For example, in hydrogen atom there is one electron in its orbit and in a chlorine atom there is 7 valence electron. So, in order to attain stability both hydrogen and chlorine share electrons when they come close to each other.
Whereas except hydrogen and chlorine rest of the given atoms will form ionic bond, that is, bond formed by transfer of electrons.
Thus, we can conclude that a pair of hydrogen and chlorine will form a covalent bond.