Answer:
A vase on a table overcomes gravity because of the upwards force of the table against it, which is stronger than the force of gravity. If you were to move the vase off the table it would no longer have anything stopping gravity from breaking it.
Explanation:
<span>they both had their conclusions based on solid evidence</span>
Answer :-
<h3>
Water and Air are necessary for rusting .</h3>
The balanced equation for the above reaction is as follows;
2S + 3O₂ --> 2SO₃
Stoichiometry of O₂ to SO₃ is 3:2
O₂ is the limiting reactant and S is provided in excess. since O₂ is the limiting reactant, the whole amount is consumed in the reaction and amount of product formed depends on amount of limiting reactant present.
Number of O₂ moles reacted- 4 g / 32 g/mol = 0.125 mol
3 mol of O₂ forms 2 mol of SO₃
therefore when 0.125 mol of O₂ reacts number of SO₃ moles - 2/3 x 0.125 mol
Number of SO₃ moles formed - 0.0833 mol
Answer is 4) 0.08 mol
Answer:
CH3CH2NH3+/CH3CH2NH2 would have the largest pKa
Explanation:
To answer this question we must know Kb of CH3CH2NH2 is 5.6x10⁻⁴, and for C6H5NH2 is 4.0x10⁻¹⁰. And the CH3CH2NH3+ and C6H5NH3+ are related with these substances because are their conjugate base. That means:
pKa of CH3CH2NH3+ = CH3CH2NH2; C6H5NH3+ = C6H5NH2
Also, Kw / Kb = Ka
Thus:
pKa of CH3CH2NH3+/CH3CH2NH2 is:
Kw / kb = Ka = 1.79x10⁻¹¹
-log Ka = pKa
pKa = 10.75
pKa of C6H5NH3+/ C6H5NH2 is:
Kw / kb = Ka = 2.5x10⁻⁵
-log Ka = pKa
pKa = 4.6
That means CH3CH2NH3+/CH3CH2NH2 would have the largest pKa