The correct answer is Thermal Equilibrium
Explanation:
The term "thermal equilibrium" is used when two or more objects have the same temperature and therefore there is not an exchange of heat between them. This occurs when the objects had a different temperature at the beginning but due to a close contact heat is transferred from one object to the other until an equilibrium or same temperature is reached. For example, a hot cup over a table or any other surface will transfer the heat to the surface, but after some time both the cup and the surface will have the same temperature or will reach thermal equilibrium.
*The molality of a solution is calculated by taking the moles of solute and dividing by
the kilograms of solvent* Basically if we had 1.00 mole of sucrose (it's about 342 3 grams) and
proceeded to mix it into exactly 1.00 liter water. It would dissolve and make sugar
water. We keep adding water, dissolving and stirring until all the solid was gone. We
then made sure everything was well-mixed.
What would be the molality of this solution? Notice that my one liter of water weighs
1000 grams (density of water = 1.00 g / mL and 1000 mL of water in a liter).
The radioactive decay obeys first order kinetics
the rate law expression for radioactive decay is
![ln\frac{[A_{0}]}{[A_{t}]}=kt](https://tex.z-dn.net/?f=ln%5Cfrac%7B%5BA_%7B0%7D%5D%7D%7B%5BA_%7Bt%7D%5D%7D%3Dkt)
Where
A0 = initial concentration
At = concentration after time "t"
t = time
k = rate constant
For first order reaction the relation between rate constant and half life is:

Let us calculate k
k = 0.693 / 72 = 0.009625 years⁻¹
Given
At = 0.25 A0

time = 144 years
So after 144 years the sample contains 25% parent isotope and 75% daughter isotopes**
Simply two half lives
Answer:
It would have to be around 9.8 volume
Explanation:
I think it’s c I could be wrong