Answer:
Correct, is there another part to the question?
Answer:
2.1 rad/s
Explanation:
Given that,
Mass of a tether ball, m = 0.546 kg
Length of a rope, l = 4.56 m
The maximum tension the rope can withstand before breaking is 11.0 N
We need to find the maximum angular speed of the ball. Let v is the linear velocity. The maximum tension is balanced by the centripetal force acting on it. It can be given by :

Let
is the angular speed of the ball. The relation between the angular speed and angular velocity is given by :

So, the maximum angular speed of the ball is 2.1 rad/s.
S: 198 m
v=39 m/s
u=0
t=?
a=?
v²=u²+2as
(39)²=(0)²+2(a)(198)
1521=396a
1521/396=a
3.84 m/s^2 = a
Hope I helped :)
Answer:
Explanation:
Yes , their displacement may be equal .
Suppose the displacement is AB where A is starting point and B is end point .
The car is covering the distance AB by going from A to B on straight line . On the other hand plane goes from A to C , then from C to D and then from D to B . In this way plane reaches B from A on a different path which is longer than path of the car . In the second case also displacement of plane is AB . In the second case distance covered is longer but displacement is same that is AB .
Answer:
This depends on the writers
if they want they can make spiderman deny the laws of nature