Answer:
This was my best estimation of the answers
Answer:
70 m.
Explanation:
Given,
Frequency, f = 20 HZ
speed of sound, v = 1400 m/s
wavelength of the waves = ?
we know,
v = f λ
![\lambda= \dfrac{v}{f}](https://tex.z-dn.net/?f=%5Clambda%3D%20%5Cdfrac%7Bv%7D%7Bf%7D)
![\lambda= \dfrac{1400}{20}](https://tex.z-dn.net/?f=%5Clambda%3D%20%5Cdfrac%7B1400%7D%7B20%7D)
![\lambda=70\ m](https://tex.z-dn.net/?f=%5Clambda%3D70%5C%20m)
Hence, the wavelength of the wave is equal to 70 m.
Answer:
B. d(low)=4d(high)
Explanation:
Frequency of a string can be written as;
f = v/2L
Where;
v = sound velocity
L = string length
Frequency can be further expanded to;
f = v/2L = (1/2L)√(T/u) ......1
Where;
m= mass,
u = linear density of string,
T = tension
p = density of string material
A = cross sectional area of string
d = string diameter
u = m/L .......2
m = pAL = p(πd^2)L/4 (since Area = (πd^2)/4)
f = (1/2L)√(T/u) = (1/2L)√(T/(m/L))
f = (1/2L)√(T/((p(πd^2)L/4)/L))
f = (1/2L)√(4T/pπd^2)
f = (1/L)(1/d)√(4T/pπ)
Since the length of the strings are the same, the frequency is inversely proportional to the string diameter.
f ~ 1/d
So, if
4f(low) = f(high)
Then,
d(low) = 4d(high)
Answer:
a) P=0.25x10^-7
b) R=B*N2*E
c) N=1.33x10^9 photons
Explanation:
a) the spontaneous emission rate is equal to:
1/tsp=1/3 ms
the stimulated emission rate is equal to:
pst=(N*C*o(v))/V
where
o(v)=((λ^2*A)/(8*π*u^2))g(v)
g(v)=2/(π*deltav)
o(v)=(λ^2)/(4*π*tp*deltav)
Replacing values:
o(v)=0.7^2/(4*π*3*50)=8.3x10^-19 cm^2
the probability is equal to:
P=(1000*3x10^10*8.3x10^-19)/(100)=0.25x10^-7
b) the rate of decay is equal to:
R=B*N2*E, where B is the Einstein´s coefficient and E is the energy system
c) the number of photons is equal to:
N=(1/tsp)*(V/C*o)
Replacing:
N=100/(3*3x10^10*8.3x10^-19)
N=1.33x10^9 photons