1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tems11 [23]
3 years ago
5

A tuning fork with a frequency of 335 Hz and a tuning fork of unknown frequency produce beats with a frequency of 5.3 when struc

k at the same time. A small piece of putty is placed on the tuning fork with the known frequency and it's frequency is lowered slightly. When struck at the same time, the two forks now produce a beat frequency of 8 Hz. 1)What is frequency of tuning fork which originally had a frequency of 335 Hz after the putty has been placed on it
Physics
1 answer:
Ganezh [65]3 years ago
3 0

Answer:

Explanation:

Unknown fork frequency is either

335 + 5.3 = 340.3 Hz

or

335 - 5.3 = 329.7 Hz

After we modify the known fork, the unknown fork frequency equation becomes either

(335 - x) + 8 = 340.3

(335 - x)  = 332.3

x = 2.7 Hz

or

(335 - x) + 8 = 329.7

(335 - x) = 321.7

x = 13.3 Hz

IF the unknown fork frequency was 340.3 Hz,

THEN the 335 Hz fork was detuned to 335 - 2.7 = 332.3 Hz

IF the unknown fork frequency was 329.7 Hz,

THEN the 335 Hz fork was detuned to 335 - 13.3 = 321.7 Hz

You might be interested in
You are preparing a performance review and have the following measurement at hand: pv = 300; ac = 200; and ev = 250. what is cpi
Vilka [71]

CPI of the project is 1.25 so the correct answer is B

EV / AC is the formula used to calculate CPI. Here, 250 divided by 200 equals 1.25.The worth of the work that has been finished thus far in comparison to the budget is referred to as earned value.A. Schedule performance index equals (EV / PV) and schedule variance equals (EV - PV).The CPI is regarded as the most important EVM metric. It gauges the project work's cost effectiveness as of the measurement date.

To learn more about CPI:

brainly.com/question/26682248

#SPJ4

3 0
2 years ago
Một vật dao động điều hòa có phương trình là x = 4sin(πt + π/3) (cm; s). Lúc t = 0,5s vật có li độ và vận tốc là
nydimaria [60]

Answer:

0,10s

Explanation:

7 0
3 years ago
What year did Badminton become a full-medal Olympic sport?
Basile [38]

Answer:

1992

Explanation:

Badminton made its debut as a demonstration sport at the 1972 Olympic Games in Munich. It was not until the 1992 Games in Barcelona that it was officially included on the Olympic programme, with men's and women's singles and doubles events.

6 0
3 years ago
A horizontal 810-N merry-go-round of radius 1.60 m is started from rest by a constant horizontal force of 55 N applied tangentia
Sloan [31]

Answer:

576 joules

Explanation:

From the question we are given the following:

weight = 810 N

radius (r) = 1.6 m

horizontal force (F) = 55 N

time (t) = 4 s

acceleration due to gravity (g) = 9.8 m/s^{2}

K.E = 0.5 x MI x ω^{2}

where MI is the moment of inertia and ω is the angular velocity

MI = 0.5 x m x r^2

mass = weight ÷ g = 810 ÷ 9.8 = 82.65 kg

MI = 0.5 x 82.65 x 1.6^{2}

MI = 105.8 kg.m^{2}

angular velocity (ω) = a x t

angular acceleration (a) = torque ÷ MI

where torque = F x r = 55 x 1.6 = 88 N.m

a= 88 ÷ 105.8 = 0.83 rad /s^{2}

therefore

angular velocity (ω) = a x t = 0.83 x 4 = 3.33 rad/s

K.E = 0.5 x MI x ω^{2}

K.E = 0.5 x 105.8 x 3.33^{2} = 576 joules

6 0
3 years ago
Find the quantity of heat needed
krok68 [10]

Answer:

Approximately 3.99\times 10^{4}\; \rm J (assuming that the melting point of ice is 0\; \rm ^\circ C.)

Explanation:

Convert the unit of mass to kilograms, so as to match the unit of the specific heat capacity of ice and of water.

\begin{aligned}m&= 100\; \rm g \times \frac{1\; \rm kg}{1000\; \rm g} \\ &= 0.100\; \rm kg\end{aligned}

The energy required comes in three parts:

  • Energy required to raise the temperature of that 0.100\; \rm kg of ice from (-10\; \rm ^\circ C) to 0\; \rm ^\circ C (the melting point of ice.)
  • Energy required to turn 0.100\; \rm kg of ice into water while temperature stayed constant.
  • Energy required to raise the temperature of that newly-formed 0.100\; \rm kg of water from 0\; \rm ^\circ C to 10\;\ rm ^\circ C.

The following equation gives the amount of energy Q required to raise the temperature of a sample of mass m and specific heat capacity c by \Delta T:

Q = c \cdot m \cdot \Delta T,

where

  • c is the specific heat capacity of the material,
  • m is the mass of the sample, and
  • \Delta T is the change in the temperature of this sample.

For the first part of energy input, c(\text{ice}) = 2100\; \rm J \cdot kg \cdot K^{-1} whereas m = 0.100\; \rm kg. Calculate the change in the temperature:

\begin{aligned}\Delta T &= T(\text{final}) - T(\text{initial}) \\ &= (0\; \rm ^\circ C) - (-10\; \rm ^\circ C) \\ &= 10\; \rm K\end{aligned}.

Calculate the energy required to achieve that temperature change:

\begin{aligned}Q_1 &= c(\text{ice}) \cdot m(\text{ice}) \cdot \Delta T\\ &= 2100\; \rm J \cdot kg \cdot K^{-1} \\ &\quad\quad \times 0.100\; \rm kg \times 10\; \rm K\\ &= 2.10\times 10^{3}\; \rm J\end{aligned}.

Similarly, for the third part of energy input, c(\text{water}) = 4200\; \rm J \cdot kg \cdot K^{-1} whereas m = 0.100\; \rm kg. Calculate the change in the temperature:

\begin{aligned}\Delta T &= T(\text{final}) - T(\text{initial}) \\ &= (10\; \rm ^\circ C) - (0\; \rm ^\circ C) \\ &= 10\; \rm K\end{aligned}.

Calculate the energy required to achieve that temperature change:

\begin{aligned}Q_3&= c(\text{water}) \cdot m(\text{water}) \cdot \Delta T\\ &= 4200\; \rm J \cdot kg \cdot K^{-1} \\ &\quad\quad \times 0.100\; \rm kg \times 10\; \rm K\\ &= 4.20\times 10^{3}\; \rm J\end{aligned}.

The second part of energy input requires a different equation. The energy Q required to melt a sample of mass m and latent heat of fusion L_\text{f} is:

Q = m \cdot L_\text{f}.

Apply this equation to find the size of the second part of energy input:

\begin{aligned}Q_2&= m \cdot L_\text{f}\\&= 0.100\; \rm kg \times 3.36\times 10^{5}\; \rm J\cdot kg^{-1} \\ &= 3.36\times 10^{4}\; \rm J\end{aligned}.

Find the sum of these three parts of energy:

\begin{aligned}Q &= Q_1 + Q_2 + Q_3 = 3.99\times 10^{4}\; \rm J\end{aligned}.

3 0
3 years ago
Other questions:
  • What is a factor that does not change because other values have changed?
    10·1 answer
  • Measuring the Orbital Speeds of Planets
    6·1 answer
  • If the person can't accommodate and the glasses is + 2.50d, at which distance will the person see clearly
    12·2 answers
  • A 3.5-cm radius hemisphere contains a total charge of 6.6 × 10–7
    14·1 answer
  • How is ozone formed?
    11·2 answers
  • Now moving horizontally, the skier crosses a patch of soft snow, where the coefficient of friction is μk = 0.160. If the patch i
    10·1 answer
  • Do we live in a simulation?
    13·2 answers
  • What happens to the particles of an object when its temperature increases? *
    13·1 answer
  • The local newspaper has published the passage below. Last week, scientists released incredible images of aurora australis, known
    7·2 answers
  • A sound wave with a wavelength of 3200 cm travels 7,712 meters in 16 seconds. What is the frequency of the wave?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!