Answer:
D the closest
Explanation:
i looked it up and 8t says 200
Y = a (b)^t/p
y is total money
a is original amount
b is growth / decay factor
t is time
p is the frequency of every growth or decay
15131.76 = 11613 x 1.08^x
15131.76 / 11613 = 1.08^x
1.303… = 1.08^x
log1.303…. = xlog1.08
x = 3.43902165741 years
Answer:
6.37 inch
Explanation:
Thinking process:
We need to know the flow rate of the fluid through the cross sectional pipe. Let this rate be denoted by Q.
To determine the pressure drop in the pipe:
Using the Bernoulli equation for mass conservation:

thus

The largest pressure drop (P1-P2) will occur with the largest f, which occurs with the smallest Reynolds number, Re or the largest V.
Since the viscosity of the water increases with temperature decrease, we consider coldest case at T = 50⁰F
from the tables
Re= 2.01 × 10⁵
Hence, f = 0.018
Therefore, pressure drop, (P1-P2)/p = 2.70 ft
This occurs at ae presure change of 1.17 psi
Correlating with the chart, we find that the diameter will be D= 0.513
= <u>6.37 in Ans</u>
Answer:
(a) Surface energy is greater than grain boundary energy due to the fact that the bonds of the atoms on the surface are lower than those of the atoms at the grain boundary. The energy is also directly proportional to the number of bonds created.
(b) The energy of a high-angle grain boundary is higher than that of a small-angle grain boundary because the high-angle grain boundary has a higher misalignment and smaller number of bonds than a small-angle grain boundary.
Explanation:
(a) Surface energy is greater than grain boundary energy due to the fact that the bonds of the atoms on the surface are lower than those of the atoms at the grain boundary. The energy is also directly proportional to the number of bonds created.
(b) The energy of a high-angle grain boundary is higher than that of a small-angle grain boundary because the high-angle grain boundary has a higher misalignment and smaller number of bonds than a small-angle grain boundary.