Answer:
+125.4 KJmol-1
Explanation:
∆H C4H10(g) = -2877.6kJ/mol
∆H C(s)=-393.5kJ/mol
∆H H2(g) = -285.8
∆H reaction= ∆Hproducts - ∆H reactants
∆H reaction= (-2877.6kJ/mol) - [4(-393.5kJ/mol) +5(-285.8)]
∆H reaction= +125.4 KJmol-1
Answer:
a) volume of ammonium iodide required =349 mL
b) the moles of lead iodide formed = 0.0436 mol
Explanation:
The reaction is:

It shows that one mole of lead nitrate will react with two moles of ammonium iodide to give one mole of lead iodide.
Let us calculate the moles of lead nitrate taken in the solution.
Moles=molarityX volume (L)
Moles of lead nitrate = 0.360 X 0.121 =0.0436 mol
the moles of ammonium iodide required = 2 X0.0436 = 0.0872 mol
The volume of ammonium iodide required will be:

the moles of lead iodide formed = moles of lead nitrate taken = 0.0436 mol
Answer:
The reaction will continue in the forward direction until all the NO or all the NO₂ is used up.
Explanation:
- <em>Le Châtelier's principle </em><em>states that when there is an dynamic equilibrium, and this equilibrium is disturbed by an external factor, the equilibrium will be shifted in the direction that can cancel the effect of the external factor to reattain the equilibrium.</em>
- So, according to Le Chatelier's principle, removing the product (N₂O₃) from the system means decreasing the concentration of the products; thus, the reaction will proceed forward to produce more product to minimize the stress of removing N₂O₃ from the system.
- <em>So, the reaction will continue in the forward direction until all the NO or all the NO₂ is used up.
</em>
<em></em>
Answer:
The answer is bacteria (microorganisms)
Explanation:
Bacteria can't be seen with the naked eye but it's part of a species that make up the biodiversity.