Answer:
5.645 × 10⁻²³ g
Solution:
Step 1) Calculate Molar Mass of SH₂;
Atomic Mass of Sulfur = 32 g/mol
Atomic Mass of H₂ = 2 g/mol
--------------------
Molecular Mass of SH₂ = 34 g/mol
Step 2: Calculate mass of one molecule of SH₂ as;
As,
Moles = # of Molecules / 6.022 × 10²³
Also, Moles = Mass / M.Mass So,
Mass/M.mass = # of Molecules / 6.022 × 10²³
Solving for Mass,
Mass = # of Molecules × M.mass / 6.022 × 10²³
Putting values,
Mass = (1 Molecule × 34 g.mol⁻¹) ÷ 6.022 × 10²³
Mass = 5.645 × 10⁻²³ g
Answer:
There is an overall release of energy when bonds form.
Explanation:
There is a general release of energy when bonds form. This energy is called bond energy.
Bond energy is involved in the breakdown or formation of one or more bonds between atoms of a molecule. Atoms bond with each other to achieve their electronic stability, that is, they move from a higher energy situation to a lower energy one. With this we can state that when the bond between atoms is formed, energy is released; therefore, its breakdown depends on energy absorption.
Answer:
I believe this is a K-12 test question. If the answers below are what you have on your test . . .
- Precise
- Accurate
- Identical
- None of the above
Then the answer is <u>precise</u>.
Answer:
Aluminum had more value than gold in the 1820s, because it was harder to obtain. Hope this helped :)