Answer:
no one can answer your question because you have shown no arrows.
Answer:
Here's what I find.
Explanation:
Iodine-131
Iodine-131 is both a beta emitter and a gamma emitter.
About 90 % of the energy is β-radiation and 10 % is γ-radiation. Both forms are highly energetic.
The main danger is from ingestion. The iodine concentrates in thyroid gland, where the β-radiation destroys cells up to 2 mm from the tissues that absorbed it.
Both the β- and γ-radiation cause cell mutations that can later become cancerous. Small doses, such as those absorbed from the nuclear disasters in the Ukraine and Japan, can cause cancers years after the original iodine has disappeared.
Plutonium-239
Plutonium-239 is an alpha emitter.
Alpha particles cannot penetrate the skin, so external exposure isn't much of a health risk.
However, they are extremely dangerous when they are inhaled and get inside cells. They travel first to the blood or lymph system and later to the bone marrow and liver, where they cause up to 1000 times more chromosomal damage than beta or gamma rays.
It takes about 20 years for plutonium to be eliminated from the liver around 50 years for from the skeleton, so it has a long time to cause damage.
Answer:
Mn(s)/Mn^2+(aq)//Co^2+(aq)/Co(s)
Explanation:
In writing the cell notation for an electrochemical cell, the anode is written on the left hand side while the cathode is written on the right hand side. The two half cells are separated by two thick lines which represents the salt bridge.
For the cell discussed in the question; the Mn(s)/Mn^2+(aq) is the anode while the Co^2+(aq)/Co(s) half cell is the cathode.
Hence I can write; Mn(s)/Mn^2+(aq)//Co^2+(aq)/Co(s)
This is based on your personal opinion lol but ig you can say public speaking
Answer: A Lewis structure is a structural representation of a molecule where dots are used to show electron positions around the atoms and lines or dot pairs represent covalent bonds between atoms.
Explanation: Lewis structures are also called Lewis dot diagrams, electron dot diagrams, Lewis dot formulas, or electron dot formulas. Technically, Lewis structures and electron dot structures are different because electron dot structures show all electrons as dots, while Lewis structures indicate shared pairs in a chemical bond by drawing a line.