First, we must find the total mass of CuBr₂:
Mass = 64 + 2 x 80
Mass = 224
Percentage mass of copper = mass of copper x 100 / total mass
Percentage mass of copper = (64 / 224) x 100
Percentage mass of copper = 28.45%
Explanation:
It is known that the specific heat capacity of Liver
is 3.59 kJ
It is given that :
Initial temperature of Liver = Body temperature =
= 310 K
Final temperature of Liver = 180 K
Relation between heat energy, mass, and change in temperature is as follows.
Q =
Now, putting the given values into the above formula as follows.
Q = 
Q =
= 700.05 kJ
Therefore, we can conclude that amount of heat which must be removed from the liver is 700.05 kJ.
Answer: The balanced equation is
.
Explanation:
The given reaction equation is as follows.

Number of atoms present on reactant side are as follows.
- Li = 1
- H = 1
= 1
Number of atoms present on product side are as follows.
- Li = 1
- H = 2
= 1
To balance this equation, multiply Li by 2 and
by 2 on reactant side. Also, multiply
by 2 on product side.
Hence, the equation can be rewritten as follows.

Now, number of atoms present on reactant side are as follows.
- Li = 2
- H = 2
= 2
Number of atoms present on product side are as follows.
- Li = 2
- H = 2
= 2
As there are same number of atoms on both reactant and product side. Hence, the equation is now balanced.
Thus, we can conclude that the balanced equation is
.
Answer:
0.041 L = 41.3 mL
Explanation:
This problem we will solve by considering the stoichiometry of the reaction and the definition of molarity.
Number of moles in .800 L solution:
0.800 L x 0.0240 M = 0.800 L x .0240 mol/L = 0.0192 mol Fe³⁺
to form the precipitate Fe(OH)₃ we will need 3 times .0192
mol NaOH required = 0.057
given the concentration of 1.38 mol M NaOH we can calculate how many milliliters of NaOH will contain 0.057 mol:
1.L/1.38 mol NaOH x 0.057 mol NaOH = 0.041 L
0.041 L x 1000 mL/1L = 41.3 mL