Answer:
Answer:
Q_1 = 7Q
1
=7
Q_2 = 10Q
2
=10
Q_3 = 13.5Q
3
=13.5
Step-by-step explanation:
Given
5, 7, 7, 8, 10, 11, 12, 15, 17.
Required
Determine Q1, Q2 and Q3
The number of data is 9
Calculating Q1:
Q1 is calculated as:
Q_1 = \frac{1}{4}(N + 1)Q
1
=
4
1
(N+1)
Substitute 9 for N
Q_1 = \frac{1}{4}(9 + 1)Q
1
=
4
1
(9+1)
Q_1 = \frac{1}{4}*10Q
1
=
4
1
∗10
Q_1 = 2.5th\ itemQ
1
=2.5th item
This means that the Q1 is the mean of the 2nd and 3rd data.
So:
Q_1 = \frac{1}{2}(7+7)Q
1
=
2
1
(7+7)
Q_1 = \frac{1}{2}*14Q
1
=
2
1
∗14
Q_1 = 7Q
1
=7
Calculating Q2:
Q2 is calculated as:
Q_2 = \frac{1}{2}(N + 1)Q
2
=
2
1
(N+1)
Substitute 9 for N
Q_2 = \frac{1}{2}(9 + 1)Q
2
=
2
1
(9+1)
Q_2 = \frac{1}{2}*10Q
2
=
2
1
∗10
Q_2 = 5th\ itemQ
2
=5th item
Q_2 = 10Q
2
=10
Calculating Q3:
Q3 is calculated as:
Q_3 = \frac{3}{4}(N + 1)Q
3
=
4
3
(N+1)
Substitute 9 for N
Q_3 = \frac{3}{4}(9 + 1)Q
3
=
4
3
(9+1)
Q_3 = \frac{3}{4}*10Q
3
=
4
3
∗10
Q_3 = 7.5th\ itemQ
3
=7.5th item
This means that the Q3 is the mean of the 7th and 8th data.
So:
Q_3 = \frac{1}{2}(12+15)Q
3
=
2
1
(12+15)
Q_3 = \frac{1}{2}*27Q
3
=
2
1
∗27
Q_3 = 13.5Q
3
=13.5
When two sides of a membrane are in contact with each other, the distribution of ions will alter as a result of the binding of a signal molecule to a ligand-gated ion channel.
<h3>
What is a ligand-gated ion channel?</h3>
Ligand-gated ion channels (LGICs) are membrane proteins that are structurally integral and feature a pore that permits the controlled passage of particular ions across the plasma membrane. The electrochemical gradient for the permeant ions drives the passive ion flux.
When a chemical ligand, such as a neurotransmitter, attaches to the protein, ligand-gated ion channels open. Changes in membrane potential cause voltage channels to open and close. When a receptor physically deforms, as in the case of pressure and touch receptors, mechanically-gated channels open.
Learn more about ligand-gated ion channel here:
brainly.com/question/15215628
#SPJ4
Answer:
The magnitude of the average induced emf is 90V
Explanation:
Given;
area of the square coil, A = 0.4 m²
number of turns, N = 15 turns
magnitude of the magnetic field, B = 0.75 T
time of change of magnetic field, t = 0.05 s
The magnitude of the average induced emf is given by;
E = -NAB/t
E = -(15 x 0.4 x 0.75) / 0.05
E = -90 V
|E| = 90 V
Therefore, the magnitude of the average induced emf is 90V
The variable is the disinfectant that is used, because there different ones being used
Answer:
Mechanical advantage is the measure of the force amplification achieved by using a tool , mechanical device or machine . The machine preserve the input power and supply trade off force. against movement to obtain a desired amplification in the output force .