Answer:
Explanation:
Passion
For me, standing on the summit of Mt Everest was the result of following a process. The process of mountaineering. I love mountaineering. I am passionate about it. I love the months of planning for an expedition, the months of sweating and training to prepare my body physically. The meticulous preparation of my equipment. Most of all I love the huge mental challenge I have to overcome before each climb to confront my own fear. All these reasons are why I climb, they are why I climbed Mt Everest and that is why I continue to climb.
Passion is an enormously powerful force. It gives us the strength to get through hard times and setbacks. It gives us strength to overcome our fears, to ignore what other people think of us, to be disciplined and make sacrifices in pursuit of our dreams. Passionate people do not want to take shortcuts – they consider that ‘learning the process’ is an important part of the journey.
In mountaineering it’s easy to spot those who are not passionate about the process. They want to stand on top of the mountain but they are not really interested in the process of climbing the mountain. I feel for these people. Success without hard work is a hollow, empty feeling. They never last long in the sport.
Just as in life, successful mountaineers are the ones who are passionate. They are not there just to stand on the summit. Their passion gives them the energy to work the hardest, fight the longest, and in the words of Winston Churchill “never, never. never give-up”.
N2 = 3*n1
T2 = 2*T1
V1 = V2
(n2 * T2)/P2 = (n1 * T1)/P1
3 n1 * 2 T1 / P2 = n1 *T1 / P1
P2 = 6*P1
Since P2 is 6P1, it is 6 times greater than original pressure
The cyclist accelerates from 0 m/s to 9 m/s in 3 seconds with an acceleration of 3 m/s².
Answer:
Explanation:
Acceleration exerted by an object is the measure of change in speed or velocity of that object with respect to time. So the initial and final velocities play a major role in determining the acceleration of the cyclist. As here the initial velocity of the cyclist is the speed at rest and that is given as 0 m/s. Then after 3 seconds, the velocity of the cyclist changes to 9 m/s.
Then acceleration = change in velocity/Time.

Acceleration = (9-0)/3=9/3=3 m/s².
So the cyclist accelerates from 0 m/s to 9 m/s in 3 seconds with an acceleration of 3 m/s².
Complete question :
NASA is concerned about the ability of a future lunar outpost to store the supplies necessary to support the astronauts the supply storage area of the lunar outpost where gravity is 1.63m/s/s can only support 1 x 10 over 5 N. What is the maximum WEIGHT of supplies, as measured on EARTH, NASA should plan on sending to the lunar outpost?
Answer:
601000 N
Explanation:
Given that :
Acceleration due to gravity at lunar outpost = 1.6m/s²
Supported Weight of supplies = 1 * 10^5 N
Acceleration due to gravity on the earth surface = 9.8m/s²
Maximum weight of supplies as measured on EARTH :
Ratio of earth gravity to lunar post gravity:
(Earth gravity / Lunar post gravity) ;
(9.8 / 1.63) = 6.01
Hence, maximum weight of supplies as measured on EARTH should be :
6.01 * (1 × 10^5)
6.01 × 10^5
= 601000 N
Answer:
c. turn downward
Explanation:
From the information given:
To find the tendency of the sander;
We need to apply the right-hand rule torque; whereby we consider the direction of the flywheel, the direction at which the torque is acting, and the movement of the sander toward the right.
Since the flywheel of the sander is in counterclockwise movement, hence the torque direction will be outward placing on the wall. However, provided that the movement of the sander is toward the right, then there exists an opposite force that turns downward which showcases the tendency in the sander is downward.