Random or ionic bond pattern
Answer:
2.52 x
J
Explanation:
The energy given off by the microwave can be determined by the application of Planck's energy formula:
E = hf
where: E is the required energy, h is Planck's constant (6.626 x 
Kg/s), and f is the frequency (3.8 x
Hz).
So that;
E = 6.626 x
x 3.8 x 
= 2.51788 x 
Therefore, the energy released by the wave is 2.52 x
J.
Answer:
ones that can be mixed together
Explanation:
like water or ethanol
Answer:
a. 3-methylbutan-2-ol
b. 2-methylcyclohexan-1-ol
Explanation:
For this reaction, we must remember that the hydroboration is an <u>"anti-Markovnikov" reaction</u>. This means that the "OH" will be added at the <em>least substituted carbon of the double bond.</em>
In the case of <u>2-methyl-2-butene</u>, the double bond is between carbons 2 and 3. Carbon 2 has two bonds with two methyls and carbon 3 is attached to 1 carbon. Therefore <u>the "OH" will be added to carbon three</u> producing <u>3-methylbutan-2-ol</u>.
For 1-methylcyclohexene, the double bond is between carbons 1 and 2. Carbon 1 is attached to two carbons (carbons 6 and 7) and carbon 2 is attached to one carbon (carbon 3). Therefore<u> the "OH" will be added to carbon 2</u> producing <u>2-methylcyclohexan-1-ol</u>.
See figure 1
I hope it helps!
Phosphorous has three lone electrons that need pairing. Similar to how carbon has 4 lone electrons, and forms CH4