The answer i got is 2.95 g Co
Answer:
French physicist Jacques Charles (1746-1823) studied the effect of temperature on the volume of a gas at constant pressure. Charles's Law states that the volume of a given mass of gas varies directly with the absolute temperature of the gas when pressure is kept constant. The absolute temperature is temperature measured with the Kelvin scale. The Kelvin scale must be used because zero on the Kelvin scale corresponds to a complete stop of molecular motion.
alt
Figure 11.5.1: As a container of confined gas is heated, its molecules increase in kinetic energy and push the movable piston outward, resulting in an increase in volume.
Mathematically, the direct relationship of Charles's Law can be represented by the following equation:
V
T
=k
As with Boyle's Law, k is constant only for a given gas sample. The table below shows temperature and volume data for a set amount of gas at a constant pressure. The third column is the constant for this particular data set and is always equal to the volume divided by the Kelvin temperature.
Explanation:
PLEASS MARK ME AS BRAINLIEST ANSWER
The question asks average kinetic energy. So it is only related with the temperature. The higher temperature is, the higher kinetic energy is. So the answer is (4).
Answer:
Total partial pressure, Pt = 821 mm Hg
Partial pressure of Helium, P1 = 105 mm Hg
Partial pressure of Nitrogen, P2 = 312 mm Hg
Partial pressure of Oxygen, P3 = ? mm Hg
According to Dalton's law of Partial pressures,
Pt = P1 + P2 + P3
So, <u>P3 = 404 mm Hg</u>