Explanation:
First Reaction;
Ca + ZnCl2 --> CaCl2 + Zn
Oxidized Reactant: Ca. There is increase in oxidation number from 0 to +2
Reduced Reactant: Zn. There is decrease in oxidation number form +2 to 0
Second Reaction:
FeI2 + Mg --> Fe + MgI2
Oxidized Reactant: Mg. There is increase in oxidation number from 0 to +2
Reduced Reactant: Fe. There is decrease in oxidation number form +2 to 0
Third Reaction;
Mg + 2AgNO3 --> Mg(NO3)2 + Ag
Oxidized Reactant: Mg. There is increase in oxidation number from 0 to +2
Reduced Reactant: Ag. There is decrease in oxidation number form +1 to 0
Answer:
7% 4)2(10
Explanation:
beacouse if you divide it you can get the answer
Answer:
One of each
Explanation:
Be is in Group 2, so it loses its two valence electrons in a reaction to form Be²⁺ ions.
Carbonate ion has the formula CO₃²⁻.
We can use the criss-cross method to work out the formula of beryllium carbonate.
The steps are
Write the symbols of the anion and cation.
Criss-cross the numbers of the charges to become the subscripts of the other ion.
Write the formula with the new subscripts.
Divide the subscripts by their highest common factor.
Omit all subscripts that are 1.
When you use this method with Be²⁺ and CO₃²⁻, you might be tempted to write the formula for the beryllium carbonate as Be₂(CO₃)₂
However, you can divide the subscripts by their largest common factor (2).
This gives you the formula Be₁(CO₃)₁.
We omit subscripts that are 1, so the correct formula is
BeCO₃
There is one Be²⁺ ion and one CO₃²⁻ ion in a formula unit of beryllium carbonate.
Answer:
2H₂(g) + O₂(g) → 2H₂O(g), in presence of Pt as a catalyst.
Explanation:
The reaction:
<em>2H₂(g) + O₂(g) → 2H₂O(g), in presence of Pt as a catalyst.</em>
2.0 moles of hydrogen gas react with 1.0 mole of oxygen gas to produce 2.0 moles of water vapor in presence of Pt as a catalyst.