Answer:
9.2
Explanation:
Let's do an equilibrium chart of this reaction:
2NO(g) + O₂(g) ⇄ 2NO₂(g)
4.9 atm 5.1 atm 0 Initial
-2x -x +2x Reacts (stoichiometry is 2:1:2)
4.9-2x 5.1-x 2x Equilibrium
The mole fraction of NO₂ (y) can be calculated by the Raoult's law, that states that the mole fraction is the partial pressure divided by the total pressure:
y = 2x/(4.9 - 2x + 5.1 -x + 2x)
0.52 = 2x/(10 - x)
2x = 5.2 -0.52x
2.52x = 5.2
x = 2.06 atm
Thus, the partial pressure at equilibrium are:
pNO = 4.9 -2*2.06 = 0.78 atm
pO₂ = 5.1 - 2.06 = 3.04 atm
pNO₂ = 2*2.06 = 4.12 atm
Thus, the pressure equilibrium constant Kp is:
Kp = [(pNO₂)²]/[(pNO)²*(pO₂)]
Kp = [(4.12)²]/[(0.78)²*3.04]
Kp = [16.9744]/[1.849536]
Kp = 9.2
The mass of one mole of water it is 18 amu, but you need to find the mass of a molecule of water, therefore you calculate the mass of one mole of water, which is 18 amu and you divided by Avogadro's number which is 6,022 x 10^23. The result is 2,989 x 10^-23. Hope I helped you. If you have any questions ask :) Good luck.
The answer is b. The sum of the individual gas pressure in the mixture
Gray matter hope this helps!
Answer:
The answers are in the explanation.
Explanation:
The energy required to convert 10g of ice at -10°C to water vapor at 120°C is obtained per stages as follows:
Increasing temperature of ice from -10°C - 0°C:
Q = S*ΔT*m
Q is energy, S specific heat of ice = 2.06J/g°C, ΔT is change in temperature = 0°C - -10°C = 10°C and m is mass of ice = 10g
Q = 2.06J/g°C*10°C*10g
Q = 206J
Change from solid to liquid:
The heat of fusion of water is 333.55J/g. That means 1g of ice requires 333.55J to be converted in liquid. 10g requires:
Q = 333.55J/g*10g
Q = 3335.5J
Increasing temperature of liquid water from 0°C - 100°C:
Q = S*ΔT*m
Q is energy, S specific heat of ice = 4.18J/g°C, ΔT is change in temperature = 100°C - 0°C = 100°C and m is mass of water = 10g
Q = 4.18J/g°C*100°C*10g
Q = 4180J
Change from liquid to gas:
The heat of vaporization of water is 2260J/g. That means 1g of liquid water requires 2260J to be converted in gas. 10g requires:
Q = 2260J/g*10g
Q = 22600J
Increasing temperature of gas water from 100°C - 120°C:
Q = S*ΔT*m
Q is energy, S specific heat of gaseous water = 1.87J/g°C, ΔT is change in temperature = 20°C and m is mass of water = 10g
Q = 1.87J/g°C*20°C*10g
Q = 374J
Total Energy:
206J + 3335.5 J + 4180J + 22600J + 374J =
30695.5J =
30.7kJ