bvcdbcvfdnbgfbjdgfhdgfjghfjhvjbczdfsghdfshjdgfhdftgh
Answer:
I = I₀ + M(L/2)²
Explanation:
Given that the moment of inertia of a thin uniform rod of mass M and length L about an Axis perpendicular to the rod through its Centre is I₀.
The parallel axis theorem for moment of inertia states that the moment of inertia of a body about an axis passing through the centre of mass is equal to the sum of the moment of inertia of the body about an axis passing through the centre of mass and the product of mass and the square of the distance between the two axes.
The moment of inertia of the body about an axis passing through the centre of mass is given to be I₀
The distance between the two axes is L/2 (total length of the rod divided by 2
From the parallel axis theorem we have
I = I₀ + M(L/2)²
Tendon Sheath - is a specialized bursa that wraps around a tendon to reduce friction.
<h3>What is Tendon Sheath ?</h3>
Tendon Sheath is a thin layer of tissue, surrounds each tendon in our body. The tendon sheath can also be called synovial lining or fibrous sheath. Tendon sheaths help to protect tendons from abrasive damage as they move.
Connection between Bursa and Tendon Sheath : Bursae are small fluid-filled sacs that can lie under a tendon, cushioning the tendon and protecting it from the injury. Bursae also provides an extra cushioning to adjacent structures that otherwise might rub against each other, which will cause wear and tear ( example, between a bone and a ligament ) .
So, lastly we can say that Tendon Sheath is the specialized bursa that wraps around a tendon to reduce friction.
To know more about Tendon Sheath please click here : brainly.com/question/17087116
#SPJ4
Answer:
<em>Thus, the object is accelerating to the left</em>
Explanation:
<u>The Net Force</u>
The net force is the result of adding all the forces as vectors acting on a body.

Each vector can be expressed in its rectangular components Fx and Fy, and the sum is the sum of the rectangular components separately.
Second Newton's law gives the relation between the net force and the acceleration of the body:

We can see the acceleration is a vector with the same direction as the net force.
The diagram shows two vertical forces and two horizontal forces.
The vertical forces are acting in opposite directions and with the same magnitude, thus they cancel out, leaving zero net force in the y-axis.
The horizontal forces are opposite and with different magnitudes. Since the force acting to the left (F3) has a greater magnitude than the force acting to the right (F4), there is a net force directed to the left with a magnitude of 60 N - 20 N = 40 N
Thus, the object is accelerating to the left