Answer:
805.6 moles
Explanation:
Molarity = 1.52mL
Volume = 530mL
1.52 moles is present in 1mL,
1mL = 0.001L
1.52 moles = 0.001L
X moles = 0.53L
X = (1.52 × 0.53) / 0.001
X = 805.6moles
805.6moles is present in 530mL or 0.52L
Answer:
The temperature would be reduced by half
Explanation:
Charles' Law => V ∝ T => V = kT => k = V/T
For two sets of T vs V conditions, the system constant (k) remains unchanged and k₁ = k₂ => V₁/T₁ = V₂/T₂.
Therefore, if V₁ is reduced to 1/2V₁ = V₂ => V₁/T₁ = 1/2V₁/T₂ => V₁/T₁ = V₁/2T₂
and solving for T₂ => 1/T₁ = 1/2T₂ => 2T₂ = T₁ => T₂ = 1/2T₁
∴ The initial temperature (T₁) would be reduced by half or, T₂ = 1/2T₁
Answer:
Photoelectric effect, pair production and Compton scattering
Explanation:
Gamma rays, having no charge, can be slowed slowly by ionization as a material passes through. They suffer other mechanisms that eventually make them disappear, transferring their energy, they can cross several centimeters of a solid, or hundreds of meters of air, without undergoing any process or affecting the material they cross. Then they suffer one of the three effects and deposit much of their energy there. The three mechanisms of interaction with matter are: the photoelectric effect, the Compton effect and the production of pairs.
The photoelectric effect is that the photon meets an electron in the material and transfers all its energy, disappearing the original photon. The secondary electron acquires all the energy of the photon in the form of kinetic energy, and is sufficient to separate it from its atom and convert it into a projectile. This is stopped by ionization and excitation of the material
In the Compton effect the photon collides with an electron as if it were a clash between two elastic spheres. The secondary electron acquires only part of the energy of the photon and the rest takes it with another photon of lesser energy and diverted.
When an energy photon approaches the intense electric field of a nucleus, the production of pairs can happen. In this case the photon is transformed into an electron positron pair. Since the sum of the mass of the pair is 1.02 MeV, it cannot happen if the photon's energy is less than this amount. If the energy of the original photon is greater than 1.02 MeV, the surplus is distributed by the electron and the positron as kinetic energy, and the material can be ionized. The positron at the end of its path forms a positronium and then annihilates producing two annihilation photons, 0.51 MeV each.
Answer: During winter the Northern Hemisphere leans away from the sun, there are fewer daylight hours and the sun hits us at an angle. This makes it appear lower in the sky. In equatorial regions the length of days and the directness of sunlight don't change as much.
Hope this helps :)
<span>The relative strength of intermolecular forces such as ionic, hydrogen bonding, dipole-dipole interaction and Vander Waals dispersion force affects the boiling point of a compound. For this case, the longer the chain the higher the boiling point.
</span>CH, CH4, C4H10, C8H18, C16H34
Hope this answers the question. Have a nice day.