Answer:
915 Hz
Explanation:
The observed frequency from a sound source is given as
f₀ = f [(v + v₀)/(v+vₛ)]
where
f₀ = observed frequency of the sound by the observer = ?
f = actual frequency of the sound wave = 983 Hz
v = actual velocity of the sound waves = 343 m/s
vₛ = velocity of the source of the sound waves = 55.9 m/s
v₀ = velocity of the observer = 28.4 m/s
f₀ = 983 [(343+28.4)/(343+55.9)]
f₀ = 915.2 Hz = 915 Hz
Answer:

Explanation:
As we know that magnitude of two vectors is given as

here we know that
A = magnitude of vector A
B = magnitude of vector B
= angle between two vectors
so here we know that
A = 30 units
B = 40 units
angle = 90 degree
so we have



Answer:the rate changes during the position of the object
Explanation:so there is no object that has the same rate but unless it is a specific one like a care but it changes during the position of the object
Answer:
The velocity of Mosquito with respect to earth will be 0.302m/s
Explanation:
V(ma) = 1.10 m/s, east Velocity of mosquito with respect to air
V(ae) = 1.4 m/s at 35° Velocity of air with respect to Earth in west of south direction.
Velocity of Mosquito with respect to earth will be
V(me) = V(ma) + V(ae)
We need to find the mosquito’s speed with respect to Earth in the x direction.
V(x, me) = V(x, ma) + V(x, ae) = V(ma) + V(ae)(cos theta(ae) )
Angle (ae) = –90.0° − 35°=−125°
V(x, me) = 1.10 + (1.4)Cos(-125)
= 1.10 + 1.4(-0.57)
= 1.10 -0.798
= 0.302
So the velocity of Mosquito with respect to earth will be 0.302m/s