Well we know the correct answer cannot be "a" bcause velocity is tangent to the circlular path of an object experienting centripical motion. Velocity DOES NOT point inward in centripical motion.
we know the correct answer cannot be "b" because "t" stands for "time" which cannot point in any direction. so, time cannot point toward the center of a circle and therefore this answer must be incorrect.
I would choose answer choice "c" because both force and centripical acceleration point toward the center of the circle.
I do not think answer choice "d" can be correct because the velocity of the mass moves tangent to the circle. velocity = (change in position) / time. Therefore, by definition the mass is moving in the direction of the velocity which does not point to the center of the circle.
does this make sense? any questions?
<em><u>A</u></em><em><u>. </u></em><em><u>R</u></em><em><u>E</u></em><em><u>D</u></em><em><u> </u></em><em><u>W</u></em><em><u>A</u></em><em><u>V</u></em><em><u>E</u></em><em><u>S</u></em><em><u> </u></em><em><u>I</u></em><em><u>S</u></em><em><u> </u></em><em><u>N</u></em><em><u>O</u></em><em><u>T</u></em><em><u> </u></em><em><u>A</u></em><em><u> </u></em><em><u>L</u></em><em><u>I</u></em><em><u>G</u></em><em><u>H</u></em><em><u>T</u></em><em><u> </u></em><em><u>W</u></em><em><u>A</u></em><em><u>V</u></em><em><u>E</u></em><em><u> </u></em><em><u>B</u></em><em><u>E</u></em><em><u>C</u></em><em><u>A</u></em><em><u>U</u></em><em><u>S</u></em><em><u>E</u></em><em><u> </u></em><em><u>THE</u></em>RE<em><u> </u></em><em><u>I</u></em><em><u>S</u></em><em><u> </u></em><em><u>N</u></em><em><u>O</u></em><em><u>T</u></em><em><u> </u></em><em><u>RED</u></em><em><u> </u></em><em><u>W</u></em><em><u>A</u></em><em><u>V</u></em><em><u>E</u></em><em><u>.</u></em>
<em><u>A</u></em><em><u>L</u></em><em><u>S</u></em><em><u>O</u></em><em><u> </u></em><em><u>I</u></em><em><u>F</u></em><em><u> </u></em><em><u>Y</u></em><em><u>O</u></em><em><u>U</u></em><em><u> </u></em><em><u>D</u></em><em><u>O</u></em><em><u>N</u></em><em><u>T</u></em><em><u> </u></em><em><u>B</u></em><em><u>E</u></em><em><u>L</u></em><em><u>I</u></em><em><u>E</u></em><em><u>V</u></em><em><u>E</u></em><em><u> </u></em><em><u>S</u></em><em><u>E</u></em><em><u>A</u></em><em><u>R</u></em><em><u>C</u></em><em><u>H</u></em><em><u> </u></em><em><u>I</u></em><em><u>T</u></em><em><u> </u></em><em><u>F</u></em><em><u>R</u></em><em><u>O</u></em><em><u>M</u></em><em><u> </u></em><em><u>G</u></em><em><u>O</u></em><em><u>O</u></em><em><u>G</u></em><em><u>L</u></em><em><u>E</u></em>
Answer:
a) A = 3 cm, b) T = 0.4 s, f = 2.5 Hz,
2) A standing wave the displacement of the wave is canceled and only one oscillation remains
Explanation:
a) in an oscillatory movement the amplitude is the highest value of the signal in this case
A = 3 cm
b) the period of oscillation is the time it takes for the wave to repeat itself in this case
T = 0.4 s
the period is the inverse of the frequency
f = 1 /T
f = 1 /, 0.4
f = 2.5 Hz
2) a traveling wave is a wave for which as time increases the displacement increases, in the case of a transverse wave the oscillation is perpendicular to the displacement and in the case of a longitudinal wave the oscillation is in the same direction of the displacement.
A standing wave occurs when a traveling wave bounces off some object and there are two waves, one that travels in one direction and the other that travels in the opposite direction. In this case, the displacement of the wave is canceled and only one oscillation remains.
Answer:
r = 5,085 m
Explanation:
The force exerted by on the surface of the Earth on an electron is its weight
W = F = 9.11 10⁻³¹ 9.8
W = 8.9 10⁻³⁰ N
The electric force between an electron and a proton is given by Coulomb's Law
Fe = k q₁ q₂ / r²
Fe = - k q² / r²
They ask us that W = Fe
W = k q² / r²
r = √ k q² / W
Let's calculate
r = √ 8.99 10⁹ (1.6 10⁻¹⁹)² /8.9 10⁻³⁰
r = √ 25.86
r = 5,085 m
Let's look for the relationship of this distance with the harmonic distance
R / R_atomic = 5,085 / 10⁻¹⁰
R / R_Atomic = 5 10¹⁰
We see that this distance is 10¹⁰ times the interatomic distance, so the gravitational attraction force is very small at atomic scale