Answer:
A change in pH in the protein habitat can modify its ionic bonds because because the chemical equilibrium shifts to one side or the other depends on the modification
Explanation:
The pH influences the charge acquired by the acidic and basic groups present in the molecules. Proteins usually have groups with characteristics of acid or weak base. Therefore, they are partially ionized in solution coexisting in equilibrium different species.
The degree of ionization of the different functional groups is in relation to the pH of the medium in which they are found, since the H3O + and OH- species are part of the equilibrium situation. Therefore, according to the pH, each group with characteristics of weak acid or base present in the molecule will be ionized to a lesser or greater extent. There are extreme situations where the balance has been totally displaced in one direction, for example: under very high pH conditions (low concentration of H3O +) weak acids are considered fully ionized, so the functional group will always have an electric charge. The same goes for the bases at very low pH values. In other equilibrium situations, species of the same molecule with different load will coexist in the solution, due to the pH value of the medium in which it is found.
Answer:
Explanation:
Method 1 proportion
1 mole of chromium is 52 grams
11.9 moles = x grams
1/11.9 = 52/x Cross multiply
x = 11.9 * 52
x = 618.8 grams
Now I have used an approximate mass for Chromium. The answer you get here is expected to reflect the weigth given on your periodic table Use that to get your answer. You should give a number very close to mine. Round to 3 places as in 619.
Method Two Formula
mols = given mass / molecular mass
11.9 = given mass / 51.9961 Multiply both sides by 51.9961
11.9 *51.9961 = given mass
given mass = 618.75
given mass = 619
Ends....................?
Answer:
At anode - 
At cathode - 
Explanation:
Electrolysis of NaBr:
Water will exist as:

The salt, NaBr will dissociate as:

At the anode, oxidation takes place, as shown below.

At the cathode, reduction takes place, as shown below.

We will see that the volume of the unit cell is 144,070,699.06 pm^3
<h3>
How to get the volume of a body-centered cubic unit cell?</h3>
In a body-centered cubic unit cell, the side length of the cube is given as:

Where R is the radius of the atom.
And the volume of a cube is the side length cubed, then we can see that the volume of our cube will be:

Solving that we get:

This is the approximated volume of the unit cell.
If you want to learn more about unit cell structures, you can read:
brainly.com/question/13110055