1143.4grams of solute are needed to make 2.50L of a 1.75M solution of Ba(NO3)2. Details about molarity can be found below.
<h3>How to calculate mass?</h3>
The mass of a substance can be calculated by multiplying the number of moles by its molar mass.
However, the number of moles can be calculated by using the following formula:
Molarity = no of moles ÷ volume
no of moles = 1.75 × 2.5
no of moles = 4.38mol
molar mass of Ba(NO3)2 = 261.34g/mol
mass of Ba(NO3)2 = 261.34 × 4.38
mass of Ba(NO3)2 = 1143.4grams.
Therefore, 1143.4grams of solute are needed to make 2.50L of a 1.75M solution of Ba(NO3)2.
Learn more about mass at: brainly.com/question/19694949
Answer: The law of conservation of mass states that, during a chemical reaction, the total mass of the products must be equal to the total mass of the reactants.
Explanation:
Hope it helps
Answer : The volume for 6.0m HCl solution required = 62.5 ml
Solution : Given,
Initial concentration of HCl solution = 6.0m
Final concentration of HCl solution = 1.5m
Final volume of HCl solution = 250 ml
Initial volume of HCl solution = ?
Formula used for dilution is,

where,
= initial concentration
= final concentration
= initial volume
= final volume
Now put all the given values in above formula, we get the initial volume of HCl solution.

= 62.5 ml
Therefore, the volume for 6.0m HCl solution required = 62.5 ml
<em>mC₃H₈: 44 g/mol</em>
<em>mCO₂: 44 g/mol</em>
---------------------
C₃H₈ + 5O₂ ----> 3CO₂ + 4H₂O
44g (44·3)g
44g C₃H₈ ------ 132g CO₂
15g C₃H₈ ------ X
X = (15×132)/44
<u>X = 45g CO₂
</u>
_____
:)