The full question asks to decide whether the gas was a specific gas. That part is missing in your question. You need to decide whether the gas in the flask is pure helium.
To decide it you can find the molar mass of the gas in the flask, using the ideal gas equation pV = nRT, and then compare with the molar mass of the He.
From pV = nRT you can find n, after that using the mass of gass in the flask you use MM = mass/moles.
1) From pV = nRT, n = pV / RT
Data:
V = 118 ml = 0.118 liter
R = 0.082 atm*liter/mol*K
p = 768 torr * 1 atm / 760 torr = 1.0105 atm
T = 35 + 273.15 = 308.15 K
n = 1.015 atm * 0.118 liter / [ 0.082 atm*liter/K*mol * 308.15K] =0.00472 mol
mass of gas = mass of the fask with the gas - mass of the flasl evacuated = 97.171 g - 97.129 g = 0.042
=> MM = mass/n = 0.042 / 0.00472 = 8.90 g/mol
Now from a periodic table or a table you get that the molar mass of He is 4g/mol
So the numbers say that this gas is not pure helium , because its molar mass is more than double of the molar mass of helium gas.
Answer:
C + O2 → CO2
Explanation:
C + O2 → CO ----------------- (1)
from equ (1) on reactant side, C has 1 mole, O has 2 moles
from equ (1) on product side, C has 1 mole, O has 1 mole
Thus, to balance the equation, O should have 2 moles
C + O2 → CO2
I think it is Global warming
your answer will be :
B. <u>Na has a lower</u> <u>electronegativity than H</u>
because Na belongs to alkali metals which are least electronegative (most electro positive) but hydrogen is a non metal, it has higher electronegativity as compared to metals like Sodium (Na).
Isotopes of same element has different number of neutrons with different masses and having same number of protons and electrons.
Radioactive isotopes are those isotopes which are radioactive in nature. The unstable nucleus results in the radioactivity process and this process will go on until the stable isotope (element) forms.
Thus, the nucleus of unstable isotopes of an element will decay leading to emission of radiation.