ΔG° = 14.1 kJ/mol
For the reaction A → B, <em>K</em> = [B]/[A].
If [A] = 240 and [B] = 1, then
<em>K</em> = 1/240 = 4.167 x 10^(-3)
The relationship between Δ<em>G</em>° and <em>K</em> is:
Δ<em>G</em>° = -<em>RT</em>ln<em>K</em>
where
<em>R</em> = the gas constant = 8.314 J·K^(-1)mol^(-1)
<em>T</em> = the Kelvin temperature
In this problem, <em>T</em> = (37 + 273.15) K = 310.15 K
∴ #Δ<em>G</em>° = -8.314 J·K^(-1)mol^(-1) × 310.15 K × ln(4.167× 10^(-3)
= -2579 × [-5.481 J·mol^(-1)] = 14 100 J·mol^(-1) = 14.1 kJ/mol
Note: We should expect Δ<em>G</em>° to be positive because <em>K</em> < 1.
I am answering A question
Answer:
The correct answer is:
2.6 m3 (B)
Explanation:
SF unit stands for Stowage factor unit. Stowage factor is the volume occupied by one unit of mass (weight) when stowed in cargo space. SF expresses the unit in cubic meters (m³) or cubic feet. SF is a unit of measurement that indicates how much space (volume) a particular unit of cargo occupies in a ship's cargo compartment
Answer:
A calorimeter is an object used for calorimetry, or the process of measuring the heat of chemical reactions or physical changes as well as heat capacity. Differential scanning calorimeters, isothermal micro calorimeters, titration calorimeters and accelerated rate calorimeters are among the most common types.
Explanation: