Answer:
The maximum height the box will reach is 1.72 m
Explanation:
F = k·x
Where
F = Force of the spring
k = The spring constant = 300 N/m
x = Spring compression or stretch = 0.15 m
Therefore the force, F of the spring = 300 N/m×0.15 m = 45 N
Mass of box = 0.2 kg
Work, W, done by the spring = and the kinetic energy gained by the box is given by KE =
Since work done by the spring = kinetic energy gained by the box we have
= therefore we have v = = = = 5.81 m/s
Therefore the maximum height is given by
v² = 2·g·h or h = = = 1.72 m
Answer:
Total energy is constant
Explanation:
The laws of thermodynamics state that thermal energy (heat) is always transferred from a hot body (higher temperature) to a cold body (lower temperature).
This is because in a hot body, the molecules on average have more kinetic energy (they move faster), so by colliding with the molecules of the cold body, they transfer part of their energy to them. So, the temperature of the hot body decreases, while the temperature of the cold body increases.
This process ends when the two bodies reach the same temperature: we talk about thermal equilibrium.
In this problem therefore, this means that the thermal energy is transferred from the hot water to the cold water.
However, the law of conservation of energy states that the total energy of an isolated system is constant: therefore here, if we consider the hot water + cold water as an isolated system (no exchange of energy with the surroundings), this means that their total energy remains constant.
Answer:
What is a Pure Substance?
Explanation:
It is something which cannot be divided into parts by physical means, as it's all made up of the same thing. Pure substances are either elements or compounds. Elements can NOT be separated into other types of matter (physically or chemically).
The phenomena<span> of </span>atmospheric<span> electricity are of three kinds. ..... In the Earth-</span>ionosphere cavity, the electric field<span> and conduction current in the lower </span>atmosphere<span> </span>
Answer:
Option (e) = The charge can be located anywhere since flux does not depend on the position of the charge as long as it is inside the sphere.
Explanation:
So, we are given the following set of infomation in the question given above;
=> "spherical Gaussian surface of radius R centered at the origin."
=> " A charge Q is placed inside the sphere."
So, the question is that if we are to maximize the magnitude of the flux of the electric field through the Gaussian surface, the charge should be located where?
The CORRECT option (e) that is " The charge can be located anywhere since flux does not depend on the position of the charge as long as it is inside the sphere." Is correct because of the reason given below;
REASON: because the charge is "covered" and the position is unknown, the flux will continue to be constant.
Also, the Equation that defines Gauss' law does not specify the position that the charge needs to be located, therefore it can be anywhere.