Answer:
The x-component of the electric field at the origin = -11.74 N/C.
The y-component of the electric field at the origin = 97.41 N/C.
Explanation:
<u>Given:</u>
- Charge on first charged particle,

- Charge on the second charged particle,

- Position of the first charge =

- Position of the second charge =

The electric field at a point due to a charge
at a point
distance away is given by

where,
= Coulomb's constant, having value 
= position vector of the point where the electric field is to be found with respect to the position of the charge
.
= unit vector along
.
The electric field at the origin due to first charge is given by

is the position vector of the origin with respect to the position of the first charge.
Assuming,
are the units vectors along x and y axes respectively.

Using these values,

The electric field at the origin due to the second charge is given by

is the position vector of the origin with respect to the position of the second charge.

Using these values,

The net electric field at the origin due to both the charges is given by

Thus,
x-component of the electric field at the origin = -11.74 N/C.
y-component of the electric field at the origin = 97.41 N/C.
Answer:
Mercury's natural state is where the atoms are close to each other but are still free to pass by each other. In which state(s) could mercury naturally exist?
Liquid is the answer
Explanation:
Answer:
Distance traveled will be 5.6307 m
Explanation:
Time t = 3 sec
We have given force F = 25 N
We know that force is given by F = ma
So ma = 25 -----------eqn 1
Weight is given by W = 196 N
We know that weight is given by W = mg
So mg = 196 -----------------eqn 2
From equation 1 and equation 2 

Initial velocity is given as 0 so u = 0 m/sec
From second equation of motion 