Answer:
Weight is directly proportional to our mass and acceleration due to gravity of that planet
Answer:
d = 5.75m
Explanation:
Using snell's law, we have,
n₁ × sin(i) = n₂ × 2 × sin(r)
n1= refractive index of 1st medium= 1
n2= refractive index of 2nd medium = 1.33
r= angle of reflection
therefore,
Here,
i = 90 - θ
Therefore, the distance is
d = 3 + d₁
d = 3 + 2.75
d = 5.75m
<span> Maths delivers! Braking distance ... If the </span>car<span> is initially travelling at u</span>m<span>/s, then the stopping distance d </span>m<span> ... the </span>speed<span> of the </span>car<span> at the </span>instant<span> the </span>brakes<span> are applied. ... An object with </span>constant acceleration<span> travels the </span>same<span> distance as it would ... We </span>start<span> with the second equation of motion:.</span>
The medium determines the speed of the wave traveling in it, which also can have a number of other effects, including how much the wave bends (refracts), whether it reflects, etc.
Because waves move through space, they must have a velocity. The velocity of a wave is a function of the type of wave, and the medium it travels through. Electromagnetic waves moving through a vacuum, for instance, travel at roughly 3 x
10
8
m/s. This value is so famous and common in physics it is given its own symbol, c.