Answer is "C".
<em><u>Explanation
</u></em>
Single replacement reaction is a type of reaction which one reactant reacts with another and makes a product by replacing one element by another.
Mg (Magnesium) reacts with Al₂O₃ (Aluminium oxide) and produces MgO (Magnesium oxide) and Al (Aluminium) as products. Here Al is replaced by Mg. Reaction is
Mg + Al₂O₃ → MgO + Al
To balance the reaction equation, both left and right hand sides should have same number of atoms in each element.
Here,
<em>Left Hand Side has </em> <em>Right Hand Side has</em>
Mg = 1 atom Mg = 1 atom
Al = 2 atom Al = 1 atom
O = 3 atom O = 1 atom
First step : balance the O atoms in both sides. To do that "3" should be added before MgO.
Second step : After balancing O atoms, there will be 3 Mg atoms in right hand side. Hence to balance Mg atoms again "3" should be added before Mg in left hand side
Third step : as the final step balance the Al atoms by adding "2" before Al in the right hand side.
Then final balanced equation should be
3Mg + Al₂O₃ → 3MgO + 2Al
Answer:
What type of work do u have? LOL
Explanation:
Answer:
D
Explanation:
Without gravity, any object wont go to the ground, and without a magnetic field, a compass cant be used for navigation.
<span>1.40 x 10^5 kilograms of calcium oxide
The reaction looks like
SO2 + CaO => CaSO3
First, determine the mass of sulfur in the coal
5.00 x 10^6 * 1.60 x 10^-2 = 8.00 x 10^4
Now lookup the atomic weights of Sulfur, Calcium, and Oxygen.
Sulfur = 32.065
Calcium = 40.078
Oxygen = 15.999
Calculate the molar mass of CaO
CaO = 40.078 + 15.999 = 56.077
Since 1 atom of sulfur makes 1 atom of sulfur dioxide, we don't need the molar mass of sulfur dioxide. We merely need the number of moles of sulfur we're burning. divide the mass of sulfur by the atomic weight.
8.00 x 10^4 / 32.065 = 2.49 x 10^3 moles
Since 1 molecule of sulfur dioxide is reacted with 1 molecule of calcium oxide, just multiply the number of moles needed by the molar mass
2.49 x 10^3 * 56.077 = 1.40 x 10^5
So you need to use 1.40 x 10^5 kilograms of calcium oxide per day to treat the sulfur dioxide generated by burning 5.00 x 10^6 kilograms of coal with 1.60% sulfur.</span>
Answer:
P₂ = 130.18 kPa
Explanation:
In this case, we need to apply the Gay-Lussack's law assuming that the volume of the container remains constant. If that's the case, then:
P₁/T₁ = P₂/T₂ (1)
From here, we can solve for the Pressure at 273 K:
P₂ = P₁ * T₂ / T₁ (2)
Now, all we need to do is replace the given data and solve for P₂:
P₂ = 340 * 273 / 713
<h2>
P₂ = 130.18 kPa</h2>
Hope this helps