The speed of car is 100.8km/h









v car= 28×3.6
=100.8km/h
Hence, the speed of the car is 100.8km/h
learn more about speed from here:
brainly.com/question/28326855
#SPJ4
Complete Question
A gas gun uses high pressure gas tp accelerate projectile through the gun barrel.
If the acceleration of the projective is : a = c/s m/s2
Where c is a constant that depends on the initial gas pressure behind the projectile. The initial position of the projectile is s= 1.5m and the projectile is initially at rest. The projectile accelerates until it reaches the end of the barrel at s=3m. What is the value of the constant c such that the projectile leaves the barrel with velocity of 200m/s?
Answer:
The value of the constant is 
Explanation:
From the question we are told that
The acceleration is 
The initial position of the projectile is s= 1.5m
The final position of the projectile is 
The velocity is 
Generally 
and acceleration is 
so

=> 

integrating both sides

Now for the limit
a = 200 m/s
b = 0 m/s
c = s= 3 m
d =
= 1.5 m
So we have

![[\frac{v^2}{2} ] \left | 200} \atop {0}} \right. = c [ln s]\left | 3} \atop {1.5}} \right.](https://tex.z-dn.net/?f=%5B%5Cfrac%7Bv%5E2%7D%7B2%7D%20%5D%20%5Cleft%20%7C%20200%7D%20%5Catop%20%7B0%7D%7D%20%5Cright.%20%20%3D%20c%20%5Bln%20s%5D%5Cleft%20%7C%203%7D%20%5Catop%20%7B1.5%7D%7D%20%5Cright.)
![\frac{200^2}{2} = c ln[\frac{3}{1.5} ]](https://tex.z-dn.net/?f=%5Cfrac%7B200%5E2%7D%7B2%7D%20%20%3D%20%20c%20ln%5B%5Cfrac%7B3%7D%7B1.5%7D%20%5D)
=> 

Answer:
A. 0.199 J
B. 0.0663 C
C = 0.0221 F
D. 12.68 ohms
Explanation:
From the question:
time duration, t = 0.28 seconds
Average power, P = 0.71 W
Average voltage, V = 3 V
A) Energy is given as:
E = P * t
=> E = 0.71 * 0.28 = 0.199 J
B) Electrical energy is also given as:
E = qV
where q = charge
=> q = E / V
∴ q = 0.199 / 3 = 0.0663 C
C) Capacitance is given as charge over voltage:
C = q / V
=> C = 0.0663 / 3 = 0.0221 F
D) Electrical power, P, can also be given as:
P = 
where R = resistance
=> R = 
R = 
Answer:
what do you mean ???????????
Answer:
16.6 kJ/°C
Explanation:
given,
Amount of heat absorbed = 45 kJ
initial temperature, T₁ = 25.5°C
final temperature, T₂ = 28.2°C
change in temperature = T₂ - T₁
= 28.2 - 25.5 = 2.7° C



Heat capacity of the object is equal to 16.6 kJ/°C