Complete Question:
A 10 kg block is pulled across a horizontal surface by a rope that is oriented at 60° relative to the horizontal surface.
The tension in the rope is constant and equal to 40 N as the block is pulled. What is the instantaneous power (in W) supplied by the tension in the rope if the block when the block is 5 m away from its starting point? The coefficient of kinetic friction between the block and the floor is 0.2 and you may assume that the block starting at rest.
Answer:
Power = 54.07 W
Explanation:
Mass of the block = 10 kg
Angle made with the horizontal, θ = 60°
Distance covered, d = 5 m
Tension in the rope, T = 40 N
Coefficient of kinetic friction, ![\mu = 0.2](https://tex.z-dn.net/?f=%5Cmu%20%3D%200.2)
Let the Normal reaction = N
The weight of the block acting downwards = mg
The vertical resolution of the 40 N force, ![f_{y} = 40sin \theta](https://tex.z-dn.net/?f=f_%7By%7D%20%3D%2040sin%20%5Ctheta)
![\sum f(y) = 0](https://tex.z-dn.net/?f=%5Csum%20f%28y%29%20%3D%200)
![N + 40 sin \theta - mg = 0\\N = -40sin60 + 10*9.81 = 0\\N = 63.46 N](https://tex.z-dn.net/?f=N%20%2B%2040%20sin%20%5Ctheta%20-%20mg%20%3D%200%5C%5CN%20%3D%20-40sin60%20%2B%2010%2A9.81%20%3D%200%5C%5CN%20%3D%2063.46%20N)
![\sum f(x) = 0](https://tex.z-dn.net/?f=%5Csum%20f%28x%29%20%3D%200)
![40 cos 60 - f_{r} - ma = 0\\ f_{r} = \mu N\\ f_{r} = 0.2 * 63.46\\ f_{r} = 12.69 N\\40cos 60 - 12.69-10a = 0\\7.31 = 10a\\a = 0.731 m/s^{2}](https://tex.z-dn.net/?f=40%20cos%2060%20-%20f_%7Br%7D%20-%20ma%20%3D%200%5C%5C%20f_%7Br%7D%20%3D%20%5Cmu%20N%5C%5C%20f_%7Br%7D%20%3D%200.2%20%2A%2063.46%5C%5C%20f_%7Br%7D%20%3D%2012.69%20N%5C%5C40cos%2060%20-%2012.69-10a%20%3D%200%5C%5C7.31%20%3D%2010a%5C%5Ca%20%3D%200.731%20m%2Fs%5E%7B2%7D)
![v^{2} = u^{2} + 2as\\u = 0 m/s\\v^{2} = 2 * 0.731 * 5\\v^{2} = 7.31\\v = \sqrt{7.31} \\v = 2.704 m/s](https://tex.z-dn.net/?f=v%5E%7B2%7D%20%20%3D%20u%5E%7B2%7D%20%2B%202as%5C%5Cu%20%3D%200%20m%2Fs%5C%5Cv%5E%7B2%7D%20%20%3D%20%202%20%2A%200.731%20%2A%205%5C%5Cv%5E%7B2%7D%20%20%3D%207.31%5C%5Cv%20%3D%20%5Csqrt%7B7.31%7D%20%5C%5Cv%20%3D%202.704%20m%2Fs)
Power, ![P = Fvcos \theta](https://tex.z-dn.net/?f=P%20%3D%20Fvcos%20%5Ctheta)
![P = 40 *2.704 cos60\\P = 54.074 W](https://tex.z-dn.net/?f=P%20%3D%2040%20%2A2.704%20cos60%5C%5CP%20%3D%2054.074%20W)