Answer:

Explanation:
Carbon disulphide is the liquid that can be used to separate iron fillings and sulphur powder.
When carbon disulphide is poured into the dish, the sulphur powder gets easily dissolved in the carbon disulfide. The iron fillings are left to settle on the bottom of the dish.
The iron fillings can get seperated through filtration. When the mixture of sulphur powder and carbon disulphide gets completely evaporated, the sulphur powder is left over.
Ima say a cause it sounds smart realistically
Explanation:
Conjugated diene is the one that contains alternate double bonds in its structure. That means both the double bonds are separated by a single bond.
Cumulated diene is the one that contains two double bonds on a single atom. This means it has two double bonds continuously.
Isolated double-bonded compound has a single bond isolated by two to three single bonds.
Compound A: Two alkenes are joined by a sigma bond.
For example:
It is a conjugated diene.
Compound B: Two alkenes are joined by a C H 2 group.
It is a cumulative diene.
Compound C: Two alkenes are joined by C H 2 C H 2.
Then it is an isolated alkene.
Compound D: A cyclohexene has a double bond between carbons 1 and 2. Carbon 3 is an sp 2 carbon that is bonded to another s p 2 carbon with an alkyl substituent.
Hence, compound D is a conjugated diene.
Answer:
= 374.90 kPa
Calculation:
As we know atm and kiloPascal are related to each other as,
1 atm = 101.325 kPa
So,
3.70 atm = X
Solving for X,
X = (3.70 atm × 101.325 kPa) ÷ 1 atm
X = 374.90 kPa
Answer:
The warmer, lighter air rises, bringing cooler, heavier air to low altitudes.
Air at higher altitudes doesn't have as much air weighing down on it from above.
Explanation:
In short - air pressure is the result of the cumulative force that air molecules act on objects below them due to Earth's gravity. The higher the altitude, the less air molecules there are to act a force below them, and therefore, there's less air pressure at higher altitudes.